Skip to main content
Log in

Titanium Oxide Films Prepared by Cathodic Electrodeposition Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, titanium oxide (TiO2) films were prepared by cathodic electrodeposition using titanium oxysulfate (TiOSO4), potassium nitrate (KNO3), citric acid, and hydrogen peroxide (H2O2) as reactants. The article investigated the effect of citric acid and deposition temperature on the structure and electrochemical properties of TiO2 films. The results indicated that hydrous TiO2 thin films were prepared at 60°C when no citric acid was added, while thin films containing hydrous TiO2 and anatase phase were fabricated at 60–75°C when citric acid was added. It was found that adding citric acid and raising the reaction temperature (60–75°C) were beneficial to reduce crack width until cracks disappeared. Adding citric acid facilitated phase transition from hydrous TiO2 to anatase. Continuous and uniform TiO2 thin film was prepared at 75°C, which was found to have ideal capacitive behavior with a rectangular cyclic voltammogram and high photocurrent performance with photocurrent 2.89 μA, which is several times higher than that of cracked samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Raguram and K.S. Rajni, J Sol-Gel Sci Tech. (2020). https://doi.org/10.1007/s10971-019-05180-3.

    Article  Google Scholar 

  2. A.M. Peiró, J. Peral, C. Domingo, X. Domènech, and J.A. Ayllón, Chem. Mater. (2001). https://doi.org/10.1021/cm0012419.

    Article  Google Scholar 

  3. L. Henrik, S. Sven, S. Anita, R. Haakan, H. Johan, H. Anders, and L. Sten-Eric, J Phys Chem B. (1997). https://doi.org/10.1021/jp970490q.

    Article  Google Scholar 

  4. P. Parastoo Agharezaei, H. Hossein Abdizadeh, and M.R. Mohammad Golobostanfard, Ceram Inter. (2018). https://doi.org/10.1016/j.ceramint.2017.11.214.

    Article  Google Scholar 

  5. C.M. Wang and S.Y. Lin, J. Solid State Electrochem. (2006). https://doi.org/10.1007/s10008-005-0690-6.

    Article  Google Scholar 

  6. C. Esparza-Contro, G. Berthomé, G. Renou, F. Robaut, S. Coindeau, C. Vachey, J. Cambin, M. Mantel, and L. Latu-Romain, Surf. Coat. Technol. (2020). https://doi.org/10.1016/j.surfcoat.2020.125643.

    Article  Google Scholar 

  7. A. Watanabe and Y. Imai, Thin Solid Films (1999). https://doi.org/10.1016/S0040-6090(99)00012-7.

    Article  Google Scholar 

  8. K. Kamada, M. Mukai, and Y. Matsumoto, Electrochim. Acta (2002). https://doi.org/10.1016/S0013-4686(02)00251-7.

    Article  Google Scholar 

  9. M. Chigane, T. Shinagawa, and J. Tani, Thin Solid Films (2017). https://doi.org/10.1016/j.tsf.2017.03.031.

    Article  Google Scholar 

  10. I. Zhitomirsky, Adv. Colloid Interface Sci. (2002). https://doi.org/10.1016/S0001-8686(01)00068-9.

    Article  Google Scholar 

  11. S. Patra, C. Andriamiadamanana, M. Tulodziecki, C. Davoisne, P.L. Taberna, and F. Frédéric Sauvage, Sci Rep. (2016). https://doi.org/10.1038/srep21588.

    Article  Google Scholar 

  12. H. Chettah, D. Abdi, H. Amardjia, and H. Haffar, Ionics (2009). https://doi.org/10.1007/s11581-008-0246-8.

    Article  Google Scholar 

  13. H. Liu, Z. Zheng, D. Yang, E. Waclawik, X. Ke, H. Zhu, S. Palmer, and R.L. Frost, J. Raman Spectrosc. (2010). https://doi.org/10.1002/jrs.2632.

    Article  Google Scholar 

  14. C. Liu, X.H. Lu, G. Yu, X. Feng, Q. Zhang, and Z.Z. Xua, Mater. Chem. Phys. (2005). https://doi.org/10.1016/j.matchemphys.2005.05.022.

    Article  Google Scholar 

  15. M. Vishwas, K.N. Rao, and R.P.S. Chakradhar, Spectrochim Acta A Mol. Biomol. Spectrosc. (2012). https://doi.org/10.1016/j.saa.2012.09.009.

    Article  Google Scholar 

  16. O. Frank, M. Zukalova, B. Laskova, J. Ku¨rti, J. Koltai, and L. Kavan, Phys. Chem. Chem. Phys. (2012). https://doi.org/10.1039/c2cp42763j.

    Article  Google Scholar 

  17. P.C.T. D’Ajello, M.A. Fiori, A.A. Pasa, and Z.G. Kipervaser, J. Electrochem. Soc. 147, 4562 (2000).

    Article  Google Scholar 

  18. C. Natarajan and G. Nogami, J. Electrochem. Soc. 143, 1547 (1996).

    Article  CAS  Google Scholar 

  19. X.L. Sui, Z.B. Wang, C.Z. Li, J.J. Zhang, L. Zhao, and D.M. Gu, J Power Sour. (2014). https://doi.org/10.1016/j.jpowsour.2014.08.074.

    Article  Google Scholar 

  20. F. Cverna, Thermal properties of metals (Ohio: Materials Park, 2002), p. 9.

    Google Scholar 

  21. S.S. Jiang and K.F. Zhang, Mater. Des. (2009). https://doi.org/10.1016/j.matdes.2009.03.023.

    Article  Google Scholar 

  22. A. Kraemer, C. Kunz, S. Graef, and F.A. Müller, Appl. Surf. Sci. (2015). https://doi.org/10.1016/j.apsusc.2015.07.055.

    Article  Google Scholar 

  23. H. Zhu, Q. Li, Y. Ren, L. Fan, J. Chen, J. Deng, and X. Xing, Adv. Mater. (2016). https://doi.org/10.1002/adma.201600973.

    Article  Google Scholar 

  24. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, Nano Lett. (2012). https://doi.org/10.1021/nl300173j.

    Article  Google Scholar 

  25. V.H. Pham, T.D. Nguyen-Phan, X. Tong, B. Rajagopalan, J.S. Chung, and J.D. Dickerson, Carbon (2018). https://doi.org/10.1016/j.carbon.2017.

    Article  Google Scholar 

  26. X.Y. Cao, X. Xing, N. Zhang, H. Gao, M.Y. Zhang, Y.C. Shang, and X.T. Zhang, J. Mater. Chem. (2015). https://doi.org/10.1039/c4ta06138a.

    Article  Google Scholar 

  27. L.H. Cui, Y. Wang, X. Shu, J.F. Zhang, C.P. Yu, J.W. Cui, H.M. Zheng, Y. Zhang, and Y.Y. Wu, RSC Adv. (2016). https://doi.org/10.1039/c5ra25581c.

    Article  Google Scholar 

  28. X. Dong, J. Tao, Y. Li, and H. Zhu, Appl. Surf. Sci. (2010). https://doi.org/10.1016/j.apsusc.2009.10.100.

    Article  Google Scholar 

  29. K.K. Supriyono, K.K. Yuni, and G. Jarnuzi, AIP Conference Proceed. (2016). https://doi.org/10.1063/1.4946952.

    Article  Google Scholar 

  30. H. Chettah, D. Abdi, H. Amardjia, and H. Haffar, Ionics (2009). https://doi.org/10.1007/s11581-008-0246-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Y., Zhu, B. Titanium Oxide Films Prepared by Cathodic Electrodeposition Method. J. Electron. Mater. 49, 7526–7531 (2020). https://doi.org/10.1007/s11664-020-08513-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08513-z

Keywords

Navigation