Skip to main content
Log in

Effects of post-weld heat treatment on microstructure and mechanical properties of the welded joints by using multi-principal filler materials

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Two types of multi-principal filler materials of FeCoCrNiMn and CrNi2MnTi0.5Al0.5 powders were used to butt weld the 304/Q235 stainless steel composite plate. The effects of post-weld heat treatment (PWHT) on the grain morphologies, phase structures, microhardness, and tensile properties of two welded joints were explored and discussed. An interesting finding was that the PWHT process had markedly different effects on the hardness, tensile properties, and fracture behavior of two welded joints. A simple phase structure, a face-centered cubic (FCC) phase, was achieved in the weld metal by using FeCoCrNiMn powders. The PWHT process had small effects on the microstructure, hardness value, tensile strength, and fracture position of the FeCoCrNiMn sample. However, the PWHT process could sharply increase the hardness and significantly decrease the tensile strength of the CrNi2MnTi0.5Al0.5 sample. Moreover, the grain morphologies in the weld zone were changed from columnar/equiaxed grains into structures with irregular morphologies for the CrNi2MnTi0.5Al0.5 sample after the PWHT process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Research data are not shared.

References

  1. Wu Z, David SA, Leonard DN, Feng Z, Bei H (2018) Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy. Sci Technol Weld Joi 23(7):585–595. https://doi.org/10.1080/13621718.2018.1430114

    Article  CAS  Google Scholar 

  2. Rhode M, Richter T, Schroepfer D, Manzoni AM, Schneider M, Laplanche G (2021) Welding of high-entropy alloys and compositionally complex alloys—an overview. Weld World 65(8):1645–1659. https://doi.org/10.1007/s40194-021-01110-6

    Article  CAS  Google Scholar 

  3. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  4. Verma A, Natu H, Balasundar I, Chelvane A, Niranjani VL, Mohape M, Mahanta G, Gowtam S, Shanmugasundaram T (2022) Effect of copper on microstructural evolution and mechanical properties of laser-welded CoCrFeNi high entropy alloy. Sci Technol Weld Joi 27(3):197–203. https://doi.org/10.1080/13621718.2022.2029116

    Article  CAS  Google Scholar 

  5. Tsai KY, Tsai MH, Yeh JW (2013) Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater 61(13):4887–4897. https://doi.org/10.1016/j.actamat.2013.04.058

    Article  CAS  Google Scholar 

  6. Li J, Meng X, Wan L, Huang Y (2021) Welding of high entropy alloys: Progresses, challenges and perspectives. J Manuf Processes 68:293–331. https://doi.org/10.1016/j.jmapro.2021.05.042

    Article  Google Scholar 

  7. Nam H, Moon B, Park S, Kim N, Song S, Park N, Na Y, Kang N (2021) Gas tungsten arc weldability of stainless steel 304 using CoCrFeMnNi filler metals for cryogenic applications. Sci Technol Weld Joi 27(1):33–42. https://doi.org/10.1080/13621718.2021.1996851

    Article  CAS  Google Scholar 

  8. Nam H, Park C, Moon J, Na Y, Kim H, Kang N (2019) Laser weldability of cast and rolled high-entropy alloys for cryogenic applications. Mater Sci Eng A 742:224–230. https://doi.org/10.1016/j.msea.2018.11.009

    Article  CAS  Google Scholar 

  9. Oliveira JP, Curado TM, Zeng Z, Lopes JG, Rossinyol E, Park JM, Schell N, Braz Fernandes FM, Kim HS (2020) Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloy. Mater Des 189:108505. https://doi.org/10.1016/j.matdes.2020.108505

    Article  CAS  Google Scholar 

  10. Shen J, Agrawal P, Rodrigues TA, Lopes JG, Schell N, He J, Zeng Z, Mishra RS, Oliveira JP (2023) Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloy. Mater Sci Eng A 867:144722. https://doi.org/10.1016/j.msea.2023.144722

    Article  CAS  Google Scholar 

  11. Shen J, Gonçalves R, Choi YT, Lopes JG, Yang J, Schell N, Kim HS, Oliveira JP (2023) Microstructure and mechanical properties of gas metal arc welded CoCrFeMnNi joints using a 308 stainless steel filler metal. Scr Mater 222:115053. https://doi.org/10.1016/j.scriptamat.2022.115053

    Article  CAS  Google Scholar 

  12. Shen J, Agrawal P, Rodrigues TA, Lopes JG, Schell N, Zeng Z, Mishra RS, Oliveira JP (2022) Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy. Mater Des 223:111176. https://doi.org/10.1016/j.matdes.2022.111176

    Article  CAS  Google Scholar 

  13. Shen J, Gonçalves R, Choi YT, Lopes JG, Yang J, Schell N, Kim HS, Oliveira JP (2022) Microstructure and mechanical properties of gas metal arc welded CoCrFeMnNi joints using a 410 stainless steel filler metal. Mater Sci Eng A 857:144025. https://doi.org/10.1016/j.msea.2022.144025

    Article  CAS  Google Scholar 

  14. Martin AC, Oliveira JP, Fink C (2019) Elemental effects on weld cracking susceptibility in AlxCoCrCuyFeNi high-entropy alloy. Metall Mater Trans A 51(2):778–787. https://doi.org/10.1007/s11661-019-05564-8

    Article  CAS  Google Scholar 

  15. Shen J, Martin AC, Schell N, Fink C, Oliveira JP (2023) Microstructures in arc-welded Al10Co25Cr8Fe15Ni36Ti6 and Al10.87Co21.74Cr21.74Cu217Fe21.74Ni21.74 multi-principal element alloys: comparison between experimental data and thermodynamic predictions. Mater Today Commun 34:104784. https://doi.org/10.1016/j.mtcomm.2022.104784

    Article  CAS  Google Scholar 

  16. Liu D, Wang J, Xu M, Jiao H, Tang Y, Li D, Zhao L, Han S (2020) Evaluation of dissimilar metal joining of aluminum alloy to stainless steel using the filler metals with a high-entropy design. J Manuf Processes 58:500–509. https://doi.org/10.1016/j.jmapro.2020.08.031

    Article  Google Scholar 

  17. Liu D, Wang W, Zha X, Guo R, Jiao H, Zhao L (2021) Effects of groove on the microstructure and mechanical properties of dissimilar steel welded joints by using high-entropy filler metals. J Mater Res Technol 13:173–183. https://doi.org/10.1016/j.jmrt.2021.04.060

    Article  CAS  Google Scholar 

  18. Liu D, Guo R, Hu Y, Shen M, Tang Y, Zhao L, Li D, Wang X (2019) Dissimilar metal joining of 304 stainless steel to SMA490BW steel using the filler metal powders with a high-entropy design. Met Mater Int 26(6):854–866. https://doi.org/10.1007/s12540-019-00400-5

    Article  CAS  Google Scholar 

  19. Wang W, Liu D, Li B, Li B, Jiao H, Tang Y, Hu Y, Zhao L, Shen M (2022) Evaluation of surface corrosion and wear resistance in the weld metal by using multi-principal filler wires via high-entropy design. Weld World 66(11):2389–2402. https://doi.org/10.1007/s40194-022-01380-8

    Article  CAS  Google Scholar 

  20. Tillmann W, Ulitzka T, Wojarski L, Manka M, Ulitzka H, Wagstyl D (2019) Development of high entropy alloys for brazing applications. Weld World 64(1):201–208. https://doi.org/10.1007/s40194-019-00824-y

    Article  CAS  Google Scholar 

  21. Liu J, Lin D, Hu J, Xi X, Tang Z, Liu Z, Hu S, Bian H, Song X (2022) Microstructure and mechanical properties of a GH3536/SS304 joint brazed with a Co25Fe25Mn5Ni25Ti20 eutectic high-entropy alloy filler. Mater Charact 193:112305. https://doi.org/10.1016/j.matchar.2022.112305

    Article  CAS  Google Scholar 

  22. Hao X, Dong H, Xia Y, Li P (2019) Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100-xCux high-entropy alloy interlayer. J Alloys Compd 803:649–657. https://doi.org/10.1016/j.jallcom.2019.06.225

    Article  CAS  Google Scholar 

  23. Zheng M, Yang J, Xu J, Jiang J, Zhang H, Oliveira JP, Lv X, Xue J, Li Z (2023) Interfacial microstructure and strengthening mechanism of dissimilar laser al/steel joint via a porous high entropy alloy coating. J Mater Res Technol 23:3997–4011. https://doi.org/10.1016/j.jmrt.2023.02.040

    Article  CAS  Google Scholar 

  24. Bridges D, Zhang S, Lang S, Gao M, Yu Z, Feng Z, Hu A (2018) Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal. Mater Lett 215:11–14. https://doi.org/10.1016/j.matlet.2017.12.003

    Article  CAS  Google Scholar 

  25. Munitz A, Meshi L, Kaufman MJ (2017) Heat treatments’ effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy. Mater Sci Eng A 689:384–394. https://doi.org/10.1016/j.msea.2017.02.072

    Article  CAS  Google Scholar 

  26. Wang X-G, Li X-G, Yan F-J, Wang C-G (2016) Effect of heat treatment on the interfacial microstructure and properties of Cu-Al joints. Weld World 61(1):187–196. https://doi.org/10.1007/s40194-016-0393-x

    Article  CAS  Google Scholar 

  27. Xia Y, Dong H, Hao X, Li S, Li P, Yang G (2019) Microstructure evolution of TC4 titanium alloy/316L stainless steel dissimilar joint vacuum-brazed with Ti-Zr-Cu amorphous filler metal. Weld World 63(2):323–336. https://doi.org/10.1007/s40194-019-00703-6

    Article  CAS  Google Scholar 

  28. Li Z, Fu L, Zheng H, Yu R, Lv L, Sun Y, Dong X, Shan A (2019) Effect of annealing temperature on microstructure and mechanical properties of a severe cold-rolled FeCoCrNiMn high-entropy alloy. Metall Mater Trans A 50(7):3223–3237. https://doi.org/10.1007/s11661-019-05231-y

    Article  CAS  Google Scholar 

  29. Nong Z-S, Zhang Z-P, Wang H-N, Deng X-G (2019) Microstructure inhomogeneity of as-cast high-entropy alloy and heat treatment improvement. Mater Sci Technol 35(14):1749–1755. https://doi.org/10.1080/02670836.2019.1647383

    Article  CAS  Google Scholar 

  30. Pickering EJ, Muñoz-Moreno R, Stone HJ, Jones NG (2016) Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr Mater 113:106–109. https://doi.org/10.1016/j.scriptamat.2015.10.025

    Article  CAS  Google Scholar 

  31. Li S, Li J, Shi J, Du Y, Peng Y, Jin F, Xiong J, Zhang F (2021) Microstructure and mechanical properties of the brazed region in the AlCoCrFeNi high-entropy alloy and FGH98 superalloy joint. Mater Sci Eng A 804:140714. https://doi.org/10.1016/j.msea.2020.140714

    Article  CAS  Google Scholar 

  32. Tong Z, Ren X, Jiao J, Zhou W, Ren Y, Ye Y, Larson EA, Gu J (2019) Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: effect of heat treatment on microstructure, residual stress and mechanical property. J Alloys Compd 785:1144–1159. https://doi.org/10.1016/j.jallcom.2019.01.213

    Article  CAS  Google Scholar 

  33. Shabani A, Toroghinejad MR, Shafyei A, Logé RE (2019) Evaluation of the mechanical properties of the heat treated FeCrCuMnNi high entropy alloy. Mater Chem Phys 221:68–77. https://doi.org/10.1016/j.matchemphys.2018.09.033

    Article  CAS  Google Scholar 

  34. Cakmak G (2017) Effect of heat treatment on the microstructure, phase distribution, and mechanical properties of AlCoCuFeMnNi high entropy alloy. Adv Mater Sci Eng 2017:1950196. https://doi.org/10.1155/2017/1950196

    Article  CAS  Google Scholar 

  35. Nam H, Park C, Kim C, Kim H, Kang N (2017) Effect of post weld heat treatment on weldability of high entropy alloy welds. Sci Technol Weld Joi 23(5):420–427. https://doi.org/10.1080/13621718.2017.1405564

    Article  CAS  Google Scholar 

  36. Otto F, Dlouhý A, Pradeep KG, Kuběnová M, Raabe D, Eggeler G, George EP (2016) Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater 112:40–52. https://doi.org/10.1016/j.actamat.2016.04.005

    Article  CAS  Google Scholar 

  37. Sun G, Zhou R, Lu J, Mazumder J (2015) Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser-deposited AISI 4340 steel. Acta Mater 84:172–189. https://doi.org/10.1016/j.actamat.2014.09.028

    Article  CAS  Google Scholar 

  38. Xu XD, Liu P, Guo S, Hirata A, Fujita T, Nieh TG, Liu CT, Chen MW (2015) Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy. Acta Mater 84:145–152. https://doi.org/10.1016/j.actamat.2014.10.033

    Article  CAS  Google Scholar 

  39. Fu J, Cao C, Tong W, Peng L (2018) Effect of thermomechanical processing on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy. T Nonferr Metal Soc 28(5):931–938. https://doi.org/10.1016/s1003-6326(18)64727-2

    Article  CAS  Google Scholar 

  40. Zhou Z, Löthman J (2016) Dissimilar welding of super-duplex and super-austenitic stainless steels. Weld World 61(1):21–33. https://doi.org/10.1007/s40194-016-0408-7

    Article  CAS  Google Scholar 

  41. Ng C, Guo S, Luan J, Wang Q, Lu J, Shi S, Liu CT (2014) Phase stability and tensile properties of Co-free Al0.5CrCuFeNi2 high-entropy alloys. J Alloys Compd 584:530–537. https://doi.org/10.1016/j.jallcom.2013.09.105

    Article  CAS  Google Scholar 

  42. Kim JH, Lim KR, Won JW, Na YS, Kim H-S (2018) Mechanical properties and deformation twinning behavior of as-cast CoCrFeMnNi high-entropy alloy at low and high temperatures. Mater Sci Eng A 712:108–113. https://doi.org/10.1016/j.msea.2017.11.081

    Article  CAS  Google Scholar 

  43. Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng A 509(1–2):98–104. https://doi.org/10.1016/j.msea.2009.01.009

    Article  CAS  Google Scholar 

  44. Gu D, Shi Q, Lin K, Xi L (2018) Microstructure and performance evolution and underlying thermal mechanisms of Ni-based parts fabricated by selective laser melting. Addit Manuf 22:265–278. https://doi.org/10.1016/j.addma.2018.05.019

    Article  CAS  Google Scholar 

  45. Xia H, Li L, Tan C, Yang J, Li H, Song W, Zhang K, Wang Q, Ma N (2022) In situ SEM study on tensile fractured behavior of Al/steel laser welding-brazing interface. Mater Des 224:111320. https://doi.org/10.1016/j.matdes.2022.111320

    Article  CAS  Google Scholar 

  46. Guo Y, Wu Y, Zhang W, Xu M, Li L, Wu Z (2021) Investigation on microstructure and properties of dissimilar joint between TRIP800 and QP980 fabricated by laser welding. Sci Technol Weld Joi 26(2):161–172. https://doi.org/10.1080/13621718.2020.1868700

    Article  CAS  Google Scholar 

  47. Jin Y, Su J, Gao C, Zhao Y, Liu H, Oliveira JP, Tan C, Yu Z (2021) Effect of heat input on interfacial microstructure, tensile and bending properties of dissimilar Al/steel lap joints by laser welding-brazing. Opt Laser Technol 142:107218. https://doi.org/10.1016/j.optlastec.2021.107218

    Article  CAS  Google Scholar 

  48. Li C, White R, Fang XY, Weaver M, Guo YB (2017) Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment. Mater Sci Eng A 705:20–31. https://doi.org/10.1016/j.msea.2017.08.058

    Article  CAS  Google Scholar 

  49. Chang SY, Li CE, Huang YC, Hsu HF, Yeh JW, Lin SJ (2014) Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials. Sci Rep 4:4162. https://doi.org/10.1038/srep04162

    Article  CAS  Google Scholar 

  50. Fiocchi J, Casati R, Tuissi A, Biffi CA (2022) Laser beam welding of CoCuFeMnNi high entropy alloy: processing, microstructure, and mechanical properties. Adv Eng Mater 24(10):2200623. https://doi.org/10.1002/adem.202200523

    Article  CAS  Google Scholar 

  51. Liu D, Zha X, Wang W, Tang Y, Jiao H, Hu Y, Zhao L, Zhang J (2022) Microstructure and mechanical properties of welded joints of stainless steel clad sheets using Cr-Ni-Cu-Al multi-principal filler wires. J Mater Eng Perform. https://doi.org/10.1007/s11665-022-07257-7

    Article  Google Scholar 

  52. Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK (2008) Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 10(6):534–538. https://doi.org/10.1002/adem.200700240

    Article  CAS  Google Scholar 

  53. Tsai M-H, Yeh J-W (2014) High-entropy alloys: a critical review. Mater Res Lett 2(3):107–123. https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  54. Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2015) Design of high entropy alloys: a single-parameter thermodynamic rule. Scr Mater 104:53–55. https://doi.org/10.1016/j.scriptamat.2015.03.023

    Article  CAS  Google Scholar 

  55. Wang X, Liu Q, Huang Y, Xie L, Xu Q, Zhao T (2020) Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTi(x) high entropy Alloys prepared by laser cladding. Materials 13(10):2209. https://doi.org/10.3390/ma13102209

    Article  CAS  Google Scholar 

  56. Chen X, Yan L, Karnati S, Zhang Y, Liou F (2017) Fabrication and characterization of AlxCoFeNiCu1−x high entropy alloys by laser metal deposition. Coatings 7(4):47. https://doi.org/10.3390/coatings7040047

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (52265047), Guangdong Basic and Applied Basic Research Foundation (2022A1515240045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dejia Liu or Yu Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission II - Arc Welding and Filler Metals.

Highlights

• Two types of multi-principal filler materials were used to butt weld the 304/Q235 stainless steel composite plate.

• The effects of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of two welded joints were explored.

• The PWHT process had different effects on the hardness variation and tensile properties of two welded joints.

• The PWHT process could sharply increase the hardness, and decrease the tensile strength of the CrNi2MnTi0.5Al0.5 sample.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Ni, C., Zha, X. et al. Effects of post-weld heat treatment on microstructure and mechanical properties of the welded joints by using multi-principal filler materials. Weld World 67, 1695–1706 (2023). https://doi.org/10.1007/s40194-023-01527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-023-01527-1

Keywords

Navigation