Skip to main content
Log in

Study on interface morphology and effect of gap gas in explosive welding

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Explosive welding quality is deeply related to the interface morphology, and the interface morphology is mainly dependent on some process parameters such as collision velocity, welding angle, and material strength (Zeng et al. Weld World 63:967–974. 1; Zeng et al. Met Mater Eng 49(6):1977-1983. 2; Zeng et al. Baozha Yu Chongji/Explosion Shock Waves 39(5): 7. 3). In this paper, the quantitative prediction method of explosive welding interface morphology was investigated based on the fluid elastoplastic theory and experimental results. In addition, a model of shock wave propagation was proposed to study the gas movement in the gap between the plates during the welding process. The results showed that good agreement of interface morphology can be observed between the quantitative calculation results and the experiment results. The “channel effect” of gas shock wave between the base and cladding plates was proposed, which can cause the tail of the cladding plate to be lifted and change the welding parameters before the collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zeng X, Li X, Chen X, Wang X, Yan H (2019) Numerical and experimental studies on the explosive welding of plates with different initial strength. Weld World 63:967–974. https://doi.org/10.1007/s40194-019-00733-0

    Article  Google Scholar 

  2. Zeng X, Li X, Wang X, Yan H, Li K(2020) Formation and development of explosive welding wave interface, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 49(6):1977~1983. http://www.rmme.ac.cn/rmmeen/ch/reader/view_abstract.aspx?file_no=20190333&flag=1

  3. Zeng X, Li X, Cao J, Wang X, Yan H(2019) Interface characteristics of explosive welding for different strength plates, Baozha Yu Chongji/Explosion Shock Waves. 39(5): 7. https://doi.org/10.11883/bzycj-2018-0400

  4. Bataev I, Tanaka S, Zhou Q, Lazurenko D, Junior A, Bataev A, Hokamoto K, Mori A, Chen P (2019) Towards better understanding of explosive welding by combination of numerical simulation and experimental study. Mater Des 169:107649. https://doi.org/10.1016/j.matdes.2019.107649

    Article  CAS  Google Scholar 

  5. Harris I(1993)Welding brazing and soldering, Engineering. (1993). https://doi.org/10.1017/CBO9781107415324.004.

  6. Kundu S, Ghosh M, Laik A, Bhanumurthy K et al (2005) Chatterjee, Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer. Mater Sci Eng A 407:154–160. https://doi.org/10.1016/j.msea.2005.07.010

    Article  CAS  Google Scholar 

  7. Guo X, Wang H, Liu Z et al (2015) Interface and performance of CLAM steel / aluminum clad tube prepared by explosive bonding method. Int J Adv Manuf Technol 82:543–548. https://doi.org/10.1007/s00170-015-7380-z

    Article  Google Scholar 

  8. Cherepanov A, Maliutina I (2016) Laser welding of stainless steel to titanium using explosively welded composite inserts. Int J Adv Manuf Technol 90:3037–3043. https://doi.org/10.1007/s00170-016-9657-2

    Article  Google Scholar 

  9. Yin J, Peng G, Chen C, Yang J et al (2018) Thermal behavior and grain growth orientation during selective laser melting of Ti-6Al-4V alloy. J Mater Process Technol 260:57–65. https://doi.org/10.1016/j.jmatprotec.2018.04.035

    Article  CAS  Google Scholar 

  10. Santos JF, Staron P, Fischer T et al (2018) Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation. Acta Mater 148(15):163–172. https://doi.org/10.1016/j.actamat.2018.01.020

    Article  CAS  Google Scholar 

  11. Carl LR (1994) Brass welds made by detonation impulse. Met Prog 1994:102–103

    Google Scholar 

  12. Xu W, Birbilis N, Sha G, Wang Y, Daniels JE, Xiao Y, Ferry M (2015) A high-specific-strength and corrosion-resistant magnesium alloy. Nat Mater 14:1229–1235. https://doi.org/10.1038/nmat4435

    Article  CAS  Google Scholar 

  13. Ning J, Zhang L, Xie M, Yang H, Yin X, Zhang J (2017) Microstructure and property inhomogeneity investigations of bonded Zr/Ti/steel trimetallic sheet fabricated by explosive welding. J Alloys Compd 698:835–851. https://doi.org/10.1016/j.jallcom.2016.12.213

    Article  CAS  Google Scholar 

  14. Kaya Y, Kahraman N, Durgutlu A, Gülenç B (2017) Investigation of the microstructural, mechanical and corrosion properties of grade A ahip steel-duplex stainless steel composites produced via explosive welding, Metall. Mater Trans A Phys Metall Mater Sci 48:3721–3733. https://doi.org/10.1007/s11661-017-4161-3

    Article  CAS  Google Scholar 

  15. Wang Y, Li X, Wang X, Yan H (2018) Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding, Fusion Eng. Des 137:91–96. https://doi.org/10.1016/j.fusengdes.2018.08.017

    Article  CAS  Google Scholar 

  16. Liu R, Wang W, Zhang T, Yuan X (2017) Numerical study of Ti/Al/Mg three-layer plates on the interface behavior in explosive welding. Sci Eng Compos Mater 24:833–843. https://doi.org/10.1515/secm-2015-0491

    Article  CAS  Google Scholar 

  17. Baoxiang R, Gang T, Peng W, Changxing D (2019) Study on weldability window and interface morphology of steel tube and tungsten alloy rod welded by explosive welding. Int J Refract Met Hard Mater 84:105005. https://doi.org/10.1016/j.ijrmhm.2019.105005

    Article  CAS  Google Scholar 

  18. Paul H, Morgiel J, Baudin T, Brisset F, Prażmowski M, Miszczyk M (2014) Characterization of explosive weld joints by TEM and SEM/EBSD, Arch. Metall. Mater. 59.https://doi.org/10.2478/amm-2014-0197

  19. Prażmowski M (2014) Mechanical properties of zirconium/steel bimetal fabricated by means of explosive welding at varied detonation velocities. Arch Metall Mater 59:1134–1142. https://doi.org/10.2478/amm-2014-0198

    Article  CAS  Google Scholar 

  20. Prażmowski M, Rozumek D, Paul H(2017) Influence of the microstructure on the fatigue cracks growth in the joint zirconium-steel made by explosive welding, Solid State Phenom. 258 SSP: 619–622. https://doi.org/10.4028/www.scientific.net/SSP.258.619 .

  21. Zhang T, Wang W, Zhang W, Wei Y, Cao X, Yan Z, Zhou J (2018) Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding. J Alloys Compd 735:1759–1768. https://doi.org/10.1016/j.jallcom.2017.11.285

    Article  CAS  Google Scholar 

  22. Kurek A, Wachowski M, Niesłony A, Płociñski T, Kurzydłowski KJ (2014) Fatigue tests and metallographic of explosively cladded steel-titanium bimetal. Arch Metall Mater 59:1566–1570. https://doi.org/10.2478/amm-2014-0265

    Article  CAS  Google Scholar 

  23. Bataev IA, Ogneva TS, Bataev AA et al (2015) Explosively welded multilayer Ni-Al composites. Mater Des 88:1082–1087. https://doi.org/10.1016/j.matdes.2015.09.103

    Article  CAS  Google Scholar 

  24. Liu L, Jia YF, Xuan FZ (2017) Gradient effect in the waved interfacial layer of 304L/533B bimetallic plates induced by explosive welding. Mater Sci Eng A 704:493–502. https://doi.org/10.1016/j.msea.2017.08.012

    Article  CAS  Google Scholar 

  25. Wronka B (2011) Testing of explosive welding and welded joints. Wavy character of the process and joint quality. Int J Impact Eng 38:309–313. https://doi.org/10.1016/j.ijimpeng.2010.11.003

    Article  Google Scholar 

  26. Aizawa Y, Nishiwaki J, Harada Y, Muraishi S, Kumai S (2016) Experimental and numerical analysis of the formation behavior of intermediate layers at explosive welded Al/Fe joint interfaces. J Manuf Process 24:100–106. https://doi.org/10.1016/j.jmapro.2016.08.002

    Article  Google Scholar 

  27. Mousavi AAA, Al-Hassani STS (2005) Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding. J Mech Phys Solids 53:2501–2528. https://doi.org/10.1016/j.jmps.2005.06.001

    Article  CAS  Google Scholar 

  28. Zhang Z, Liu M (2019) Numerical studies on explosive welding with ANFO by using a density adaptive SPH method. J Manuf Process 41:208–220. https://doi.org/10.1016/j.jmapro.2019.03.039

    Article  CAS  Google Scholar 

  29. Liu M, Zhang Z, Feng D (2017) A density-adaptive SPH method with kernel gradient correction for modeling explosive welding. Comput Mech 60:513–529. https://doi.org/10.1007/s00466-017-1420-5

    Article  Google Scholar 

  30. Zhang Z, Feng D, Liu M (2018) Investigation of explosive welding through whole process modeling using a density adaptive SPH method. J Manuf Process 35:169–189. https://doi.org/10.1016/j.jmapro.2018.08.004

    Article  Google Scholar 

  31. Habib M, Keno H, Uchida R, Mori A, Hokamoto K (2015) Cladding of titanium and magnesium alloy plates using energy-controlled underwater three layer explosive welding. J Mater Process Tech 217:310–316. https://doi.org/10.1016/j.jmatprotec.2014.11.032

    Article  CAS  Google Scholar 

  32. Sun W, Li X, Hokamoto K (2013) Numerical simulation of underwater explosive welding process. Mater Sci Forum 767:120–125. https://doi.org/10.4028/www.scientific.net/MSF.767.120

    Article  CAS  Google Scholar 

  33. Sun W, Li X, Yan H, Hokamoto K (2014) Effect of initial hardness on interfacial features in underwater explosive welding of tool steel SKS3. J Mater Eng Perform 23:421–428. https://doi.org/10.1007/s11665-013-0778-6

    Article  CAS  Google Scholar 

  34. Narayan S, Tanaka S, Mori A, Hokamoto K (2017) Welding of Sn and Cu plates using controlled underwater shock wave. J Mater Process Technol 245:300–308. https://doi.org/10.1016/j.jmatprotec.2017.02.030

    Article  CAS  Google Scholar 

  35. Satyanarayan MA, Nishi M, Hokamoto K (2019) Underwater shock wave weldability window for Sn-Cu plates. J Mater Process Technol 267:152–158. https://doi.org/10.1016/j.jmatprotec.2018.11.044

    Article  CAS  Google Scholar 

  36. Chen X, Inao D, Tanaka S, Mori A, Li X, Hokamoto K (2020) Explosive welding of Al alloys and high strength duplex stainless steel by controlling energetic conditions. J Manuf Process 58:1318–1333. https://doi.org/10.1016/j.jmapro.2020.09.037

    Article  Google Scholar 

  37. Li X, Ma H, Shen Z (2015) Research on explosive welding of aluminum alloy to steel with dovetail grooves. Mater Des 87:815–824. https://doi.org/10.1016/j.matdes.2015.08.085

    Article  CAS  Google Scholar 

  38. Ma R, Wang Y, Wu J, Duan M (2014) Explosive welding method for manufacturing ITER-grade 316L(N)/CuCrZr hollow structural member, Fusion Eng. Des 89:3117–3124. https://doi.org/10.1016/j.fusengdes.2014.10.001

    Article  CAS  Google Scholar 

  39. Zhang D, Li G, Zhou Z, Shao B (1984) Effect of material strength on forming process of explosive welding interface wave, Chinese. J Theor Appl Mech 16:73–80. https://doi.org/10.6052/0459-1879-1984-1-1984-009

    Article  Google Scholar 

  40. Li K, Li X, Yan H, Wang X, Wang Y (2018) Study of continuous velocity probe method for the determination of the detonation pressure of commercial explosives. J Energ Mater 00:1–9. https://doi.org/10.1080/07370652.2018.1425310

    Article  CAS  Google Scholar 

  41. Thoraval MJ, Takehara K, Etoh TG et al (2012) Von Kármán vortex street within an impacting drop. Phys Rev Lett 108:264506. https://doi.org/10.1103/PhysRevLett.108.264506

    Article  CAS  Google Scholar 

  42. Zeng X, Wang Y, Li X, Li X, Zhao T (2019) Effect of inert gas-shielding on the interface and mechanical properties of Mg / Al explosive welding composite plate. J Manuf Process 45:166–175. https://doi.org/10.1016/j.jmapro.2019.07.007

    Article  Google Scholar 

  43. Zeng X, Wang Y, Li X, Li X, Zhao T (2019) Effects of gaseous media on interfacial microstructure and mechanical properties of titanium/steel explosive welded composite plate. Fusion Eng Des 148:111292. https://doi.org/10.1016/j.fusengdes.2019.111292

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Nos: 10672068, 10972051, 10672067). Special thanks to Professor Li for his guidance and help over the past four years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Zeng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Study Group 212-The Physics of Welding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Chen, X., Jin, P. et al. Study on interface morphology and effect of gap gas in explosive welding. Weld World 66, 1395–1402 (2022). https://doi.org/10.1007/s40194-022-01280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-022-01280-x

Keywords

Navigation