Skip to main content
Log in

Tensile behaviour and microstructure evolution in friction stir welded 2195–2219 dissimilar aluminium alloy joints

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

2XXX series aluminium alloys are widely used in propellant tanks of space launch vehicles. In this work, friction stir welding (FSW) was performed to produce dissimilar joints between 2195 and 2219 alloys. The effect of temperature (ambient, 77K and 20K) on the tensile properties of 2195–2219 joints was investigated. Results showed that a decrease in temperature increased the tensile properties significantly without a reduction in ductility. Due to contribution from 2195 alloy, the properties of the dissimilar joint were marginally higher than the 2219 similar joint. The failure location in the thermo-mechanically affected zone (TMAZ) of the 2219 side was substantiated with the hardness survey across the weld. The effect of material position at advancing side (AS) and retreating side (RS) on tensile properties of dissimilar joints was investigated. Results depicted that regardless of the material position, the failure was consistently observed at TMAZ of 2219. However, placing 2219 at the AS showed better properties than at RS. This study brought out the tensile behaviour at cryogenic temperatures and suitable material position to achieve optimum strength, which are key inputs for designing launch vehicle structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1:
Fig. 2:
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. RJH Wanhill 2013 Aerospace applications of aluminum-lithium alloys N Eswara Prasad AA Gokhale RJH Wanhill Eds Aluminum-Lithium Alloys: Processing, Properties, and Applications Butterworth-Heinemann Boston 503 535

    Google Scholar 

  2. G Wang Y Zhao Y Hao 2018 Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing J Mater Sci Technol 34 73 91 https://doi.org/10.1016/j.jmst.2017.11.041

    Article  CAS  Google Scholar 

  3. Kissell JR, Pantelakis SG, Haidemenopoulos GN (2004) Aluminum and aluminum alloys. In: Handbook of Advanced Materials. pp 321–463

  4. RJ Rioja J Liu 2012 The evolution of Al-Li base products for aerospace and space applications Metall Mater Trans A Phys Metall Mater Sci 43 3325 3337 https://doi.org/10.1007/s11661-012-1155-z

    Article  CAS  Google Scholar 

  5. GV Narayana VMJ Sharma V Diwakar 2004 Fracture behaviour of aluminium alloy 2219–T87 welded plates Sci Technol Weld Join 9 121 130 https://doi.org/10.1179/136217104225017035

    Article  CAS  Google Scholar 

  6. M Agilan G Phanikumar D Sivakumar 2018 Weld solidification cracking behaviour of AA2195 Al–Cu–Li alloy Trans Indian Inst Met 71 2667 2670 https://doi.org/10.1007/s12666-018-1425-6

    Article  CAS  Google Scholar 

  7. CAW Olea L Roldo TR Strohaecker JF Santos dos 2006 Friction stir welding of precipitate hardenable aluminium alloys: a review Weld World 50 78 87 https://doi.org/10.1007/BF03263464

    Article  CAS  Google Scholar 

  8. PL Threadgill AJ Leonard HR Shercliff PJ Withers 2009 Friction stir welding of aluminium alloys Int Mater Rev 54 49 93 https://doi.org/10.1179/174328009X411136

    Article  CAS  Google Scholar 

  9. A Muthumanickam P Gandham S Dhenuvakonda 2019 Effect of friction stir welding parameters on mechanical properties and microstructure of AA2195 Al–Li alloy welds Trans Indian Inst Met 72 1557 1561 https://doi.org/10.1007/s12666-019-01570-x

    Article  CAS  Google Scholar 

  10. RW Fonda JF Bingert 2006 Precipitation and grain refinement in a 2195 Al friction stir weld Metall Mater Trans A 37 3593 3604 https://doi.org/10.1007/s11661-006-1054-2

    Article  Google Scholar 

  11. J Zhang XS Feng JS Gao 2018 Effects of welding parameters and post-heat treatment on mechanical properties of friction stir welded AA2195-T8 Al-Li alloy J Mater Sci Technol 34 219 227 https://doi.org/10.1016/j.jmst.2017.11.033

    Article  CAS  Google Scholar 

  12. J Kang Z-C Feng J-C Li 2016 Friction stir welding of Al alloy 2219–T8: Part II-Mechanical and Corrosion Metall Mater Trans A 47 4566 4577 https://doi.org/10.1007/s11661-016-3646-9

    Article  CAS  Google Scholar 

  13. J Kang Z-C Feng GS Frankel 2016 Friction stir welding of Al alloy 2219–T8: Part I-Evolution of Precipitates and Formation of Abnormal Al2Cu Agglomerates Metall Mater Trans A 47 4553 4565 https://doi.org/10.1007/s11661-016-3648-7

    Article  CAS  Google Scholar 

  14. Z Yan X Liu H Fang 2016 Effect of sheet configuration on microstructure and mechanical behaviors of dissimilar Al–Mg–Si/Al–Zn–Mg aluminum alloys friction stir welding joints J Mater Sci Technol 32 1378 1385 https://doi.org/10.1016/j.jmst.2016.10.011

    Article  CAS  Google Scholar 

  15. JF Guo HC Chen CN Sun 2014 Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters Mater Des 56 185 192 https://doi.org/10.1016/j.matdes.2013.10.082

    Article  CAS  Google Scholar 

  16. C Jonckheere B Meester de A Denquin A Simar 2013 Torque, temperature and hardening precipitation evolution in dissimilar friction stir welds between 6061–T6 and 2014–T6 aluminum alloys J Mater Process Technol 213 826 837 https://doi.org/10.1016/j.jmatprotec.2013.01.001

    Article  CAS  Google Scholar 

  17. Ward W. Rietz J (2008) Friction-Stir Welding – Heavy Inclusions in Bi-metallic welds of Al 2219/2195. In: Trends in Welding Research 2008: Proceedings of the 8th International Conference. pp 385–390

  18. Patel V, Li W, Wang G, et al (2019) Friction stir welding of dissimilar aluminum alloy combinations: state-of-the-art. Metals (Basel). 9

  19. AMS-Standard (2016) AMS 2774G heat treatment of aluminum alloy raw materials

  20. Narayana GV (2006) Fracture behaviour aluminium alloy AA 2219-T87 welded plates at room and cryo temperatures. Indian Institute of Technology Bombay

  21. Mishra RS, Mahoney MW (2007) Friction stir welding and processing. ASM International, Materials Park, Ohio

  22. AP Reynolds WD Lockwood TU Seidel 2000 Processing-property correlation in friction stir welds Mater Sci Forum 331 1719 1724 https://doi.org/10.4028/www.scientific.net/msf.331-337.1719

    Article  Google Scholar 

  23. RS Mishra ZY Ma 2005 Friction stir welding and processing Mater. Sci. Eng. R Reports 50 1 78

    Article  Google Scholar 

  24. AAM Silva da E Arruti G Janeiro 2011 Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds Mater Des 32 2021 2027 https://doi.org/10.1016/j.matdes.2010.11.059

    Article  CAS  Google Scholar 

  25. JA Schneider AC Nunes PS Chen G Steele 2005 TEM study of the FSW nugget in AA2195-T81 J Mater Sci 40 4341 4345 https://doi.org/10.1007/s10853-005-2808-8

    Article  CAS  Google Scholar 

  26. K Kumar SV Kailas 2008 The role of friction stir welding tool on material flow and weld formation Mater Sci Eng A 485 367 374 https://doi.org/10.1016/j.msea.2007.08.013

    Article  CAS  Google Scholar 

  27. H Khalid Rafi G Phanikumar K Prasad Rao 2011 Material flow visualization during friction surfacing Metall Mater Trans A 42 937 939 https://doi.org/10.1007/s11661-011-0614-2

    Article  CAS  Google Scholar 

  28. R Kumar V Pancholi RP Bharti 2018 Material flow visualization and determination of strain rate during friction stir welding J Mater Process Technol 255 470 476 https://doi.org/10.1016/j.jmatprotec.2017.12.034

    Article  Google Scholar 

  29. HJ Zhang HJ Liu L Yu 2011 Microstructural evolution and its effect on mechanical performance of joint in underwater friction stir welded 2219–T6 aluminium alloy Sci Technol Weld Join 16 459 464 https://doi.org/10.1179/1362171811Y.0000000024

    Article  CAS  Google Scholar 

  30. S-K Park S-T Hong J-H Park 2010 Effect of material locations on properties of friction stir welding joints of dissimilar aluminium alloys Sci Technol Weld Join 15 331 336 https://doi.org/10.1179/136217110X12714217309696

    Article  CAS  Google Scholar 

  31. N-K Kim B-C Kim Y-G An 2009 The effect of material arrangement on mechanical properties in Friction Stir Welded dissimilar A5052/A5J32 aluminum alloys Met Mater Int 15 671 675 https://doi.org/10.1007/s12540-009-0671-x

    Article  CAS  Google Scholar 

  32. N Nadammal SV Kailas J Szpunar S Suwas 2017 Microstructure and texture evolution during single- and multiple-pass friction stir processing of heat-treatable aluminum alloy 2024 Metall Mater Trans A 48 4247 4261 https://doi.org/10.1007/s11661-017-4184-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Agilan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agilan, M., Phanikumar, G. & Sivakumar, D. Tensile behaviour and microstructure evolution in friction stir welded 2195–2219 dissimilar aluminium alloy joints. Weld World 66, 227–237 (2022). https://doi.org/10.1007/s40194-021-01217-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01217-w

Keywords

Navigation