Skip to main content

Advertisement

Log in

Study of direct soldering of Al2O3 ceramics and Cu substrate by use of Bi11Ag2La solder

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The work is devoted to the study of direct soldering of a substrate of Al2O3 ceramics with a Cu substrate by use of Bi11Ag2La solder. Soldering was realised by fluxless method in air by activation with power ultrasound. It was found out that lanthanum is during the ultrasonic soldering process distributed to the interface with Al2O3 substrate, enhancing thus the bond formation. The bond with ceramic substrate has adhesive character without formation of a new contact interlayer. The shear strength of joint with Al2O3 ceramics is 20 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Suganuma K, Kim SJ, Kim KS (2009) High-temperature lead-free solders: properties and possibilities. JOM 61(1):64–71

    Article  Google Scholar 

  2. Chidambaram V, Hattel J, Hald J (2010) Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system. Mater Des 31(10):4638–4645. https://doi.org/10.1016/j.matdes.2010.05.035

    Article  Google Scholar 

  3. Kroupa, A., Andersson, D., Hoo, N. et al. Current problems and possible solutions in high-temperature lead-free soldering. In J Mater Eng Perform, Vol. 21, is. 5, 2012, pp. 629–637

  4. Watson J, Castro G (2012) High-temperature electronics pose design and reliability challenges. Analog Dialogue 46-04:1–7

    Google Scholar 

  5. Chidambaram V, Hattel J, Hald J (2011) High-temperature lead-free solder alternatives. Microelectron Eng 88(6):981–989. https://doi.org/10.1016/j.mee.2010.12.072

    Article  Google Scholar 

  6. Manikam VR, Cheong KY (2011) Die attach materials for high temperature applications: a review. IEEE Trans Compon Packag Manuf Technol 1(4):457–478

    Article  Google Scholar 

  7. Gayle FW, Becka G, Badgett J et al. (2001) High temperature lead-free solder for microelectronics. JOM 17–21

  8. Koleňák R, Hlavatý I (2009, arcitle No. 1727) Lead-free solders intended for higher temperatures. Trans VŠB – Tech Univ Ostrava, Mech Ser LV(3):113–117

    Google Scholar 

  9. Schoeller H, Bansal S, Knobloch A et al (2011) Effect of alloying elements on the creep behaviour of high Pb-based solders. Mater Sci Eng 528(3):1063–1070. https://doi.org/10.1016/j.msea.2010.10.083

    Article  Google Scholar 

  10. Shi Y, Fang W, Xia Z et al (2010) Investigation of rare earth-doped BiAg high-temperature solders. J Mater Sci Mater Electron 21(9):875–881. https://doi.org/10.1007/s10854-009-0010-5

    Article  Google Scholar 

  11. Song JM, Chuang HY, Wu ZM (2006) Interfacial reactions between Bi-Ag high-temperature solders and metallic substrates. J Electron Mater 35(5):1041–1049. https://doi.org/10.1007/BF02692565

    Article  Google Scholar 

  12. Song JM, Chuang HY, Wu ZM (2007) Substrate dissolution and shear properties of the joints between Bi-Ag alloys and Cu substrate for high-temperature soldering applications. J Electron Mater 36(11):1516–1523. https://doi.org/10.1007/s11664-007-0222-5

    Article  Google Scholar 

  13. Rettenmayr M, Lambracht P, Kempf B, Graff M (2005) High melting Pb-free solder alloys for die-attach applications. Adv Eng Mater 7(10):965–969. https://doi.org/10.1002/adem.200500124

    Article  Google Scholar 

  14. Chachula M, Koleňák R, Augustín R, Koleňáková M (2011) Wettability of Bi11Ag solder during flux application. Metal, Brno

  15. Yamada Y, Takaku Y, Yagi Y et al (2006) Pb-free high temperature solders for power device packaging. Microelectron Reliab 46(9-11):1932–1937. https://doi.org/10.1016/j.microrel.2006.07.083

    Article  Google Scholar 

  16. Yamada Y, Takaku Y, Yagi Y et al (2006) Novel Bi-based high-temperature solder for mounting power semiconductor devices. R&D Rev Toyota CRDL, Research Report 41(2):43–48

    Google Scholar 

  17. Song JM, Chuang HY (2009) Faceting behaviour of primary ag in Bi-Ag alloys for high temperature soldering applications. Mater Trans 50(7):1902–1904. https://doi.org/10.2320/matertrans.M2009089

    Article  Google Scholar 

  18. Song JM, Chuang HY, Wen TX (2007) Thermal and tensile properties of Bi-Ag alloys. Metall Mater Trans 38(6):1371–1375. https://doi.org/10.1007/s11661-007-9138-1

    Article  Google Scholar 

  19. Lalena JN, Dean NF, Weiser MW (2002) Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment. J Electron Mater 31(11):1244–1249. https://doi.org/10.1007/s11664-002-0016-8

    Article  Google Scholar 

  20. Spinelli JE, Silva BL, Garcia A (2014) Microstructure, phases morphologies and hardness of a Bi-Ag eutectic alloy for high temperature soldering applications. Mater Des 58:482–490. https://doi.org/10.1016/j.matdes.2014.02.026

    Article  Google Scholar 

  21. Fima P, Gasior W, Sypien A, Moser Z (2010) Wetting of Cu by Bi-Ag based alloys with Sn and Zn additions. J Mater Sci 45(16):4339–4344. https://doi.org/10.1007/s10853-010-4291-0

    Article  Google Scholar 

  22. Koleňák R, Martinkovič M, Koleňáková M (2013) Shear strength and DSC analysis of high-temperature solders. Arch Metall Mater 58(2):529–533

    Google Scholar 

  23. Song JM, Tsai CH, Fu YP (2010) Electrochemical corrosion behaviour of Bi-11Ag alloy for electronic packaging applications. Corros Sci 52(7):2519–2524. https://doi.org/10.1016/j.corsci.2010.03.031

    Article  Google Scholar 

  24. Koleňák R, Chachula M (2013, ISSN 0954–0911) Characteristics and properties of Bi-11Ag solder. Soldering Surf Mount Technol 25(2):68–75

    Article  Google Scholar 

  25. Lanin VL (2010) Activation of melts by the energy of ultrasonic and infrared fields. Surf Eng Appl Electrochem 46(5):469–476. https://doi.org/10.3103/S106837551005011X

    Article  Google Scholar 

  26. Elliott RP, Shunk FA (1980) The Ag−Bi (Silver-Bismuth) system. Bull Alloy Phase Diagr 1(2):62–64

    Article  Google Scholar 

  27. Chakrabarti DJ, Laughlin DE (1984) The Bi−Cu (bismuth-copper) system. Bull Alloy Phase Diagr 5(2):148–155. https://doi.org/10.1007/BF02868951

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ing. Marián Drienovský, PhD. for DSC analysis, Ing. Martin Sahul, PhD. for EDX analysis, RNDr. Petr Harcuba for microscopic analysis and then to Prof. Ing. Maroš Martinkovič, PhD. for providing the methodics for shear test measurement.

Funding

The contribution was prepared with the support of APVV–0023–12 project: Research of new soldering alloys for fluxless soldering with application of beam technologies and ultrasound and VEGA 1/0089/17 project: Research of new alloys for direct soldering of metallic and ceramic materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Koleňák.

Additional information

Recommended for publication by Commission XVII - Brazing, Soldering and Diffusion Bonding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koleňák, R., Hodúlová, E. Study of direct soldering of Al2O3 ceramics and Cu substrate by use of Bi11Ag2La solder. Weld World 62, 415–426 (2018). https://doi.org/10.1007/s40194-017-0538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-017-0538-6

Keywords

Navigation