Skip to main content
Log in

Laser beam welding under vacuum of high grade materials

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Currently, three welding processes are used in the manufacturing of large scale work pieces with high weld seam depths. The gas metal arc welding and the submerged arc welding processes are characterized by a comparatively low penetration depth and welding speed, the use of welding consumables and a high energy input per length. Electron beam welding is suitable for single pass welding of high wall thicknesses, but a fine vacuum is needed, x-ray radiation is generated, the process is prone to magnetic fields, and the technology has to face a low market penetration. Laser beam welding under vacuum (“LaVa”) is on its way to become a new and superb option for these welding tasks. The paper at hand presents the latest results of a research project which targets the qualification of LaVa for the welding of heavy-walled steel structures made of unalloyed steel or duplex stainless steel. The achieved results demonstrate that, in comparison to laser beam welding at atmospheric pressure, an increase of the penetration depth and a high process stability can be achieved, whereby economic advantages and a high weld seam quality are realized. On the other hand, the latest results of the application of LaVa for the welding of nickel-base alloys, copper, and titanium are presented. It is shown that LaVa is suitable for the welding of these materials. A high process stability is achieved; spattering is minimized; and high penetration depths are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Matthes KJ, Richter E (2002) Schweißtechnik - Schweißen von metallischen Konstruktionswerkstoffen. Technica, Rupperswil

    Google Scholar 

  2. Olschok S (2008) Laserstrahl-Lichtbogen Hybridschweißen von Stahl im Dickblechbereich. Dissertation, Dissertation, RWTH Aachen University. Aachener Berichte Fügetechnik Band 3, Shaker, Aachen

    Google Scholar 

  3. Arata Y, Abe N, Oda T, Tsujii N (1985) Fundamental phenomena during vacuum laser welding. Proceedings, Materials Processing Symposium Icaleo. 1–7

  4. Verwaerde A, Fabbro R (1985) Experimental study of continuous CO2 laser welding at subatmoshperic pressures. J Appl Phys 78:2981–2984

    Article  Google Scholar 

  5. Katayama S, Kobayashi Y, Mizutani M, Matsunawa A (2001) Effect of vacuum on penetration and defects in laser welding. J Laser Appl 13:187–192

    Article  Google Scholar 

  6. Longerich S (2011) Untersuchung zum Laserstrahlschweißen unter Vakuum im Vergleich mit dem Elektronenstrahlschweißen, Dissertation RWTH Aachen University. Aachener Berichte Fügetechnik Band 3, Shaker, Aachen, ISBN: 978-3-8440-0629-2

    Google Scholar 

  7. Reisgen U, Olschok S, Jakobs S (2013) Laserstrahlschweißen unter Vakuum - nur eine Modeerscheinung? Proceedings, 9th Conference Beam Technology, Halle, pp 19–25

    Google Scholar 

  8. Reisgen U, Olschok S, Jakobs S (2013) Laser beam welding in vacuum of thick plate structural steel. Proceedings, 32nd International Conference on Applications of Lasers & Electrooptics Icaleo, Miami, pp 341–360

    Google Scholar 

  9. Dilger K, Kruessel T, Boerner C (2013) Process characteristics of laser beam welding at reduced ambient pressure. Proceedings, San Francisco CA, doi: 10.1117/12.2003858

  10. Honig RE, Kramer DA (1969) Vapor pressure data for the solid and liquid elements, RCA laboratories review band 30. David Sarnoff Research Center, Princeton, pp S285–S305

    Google Scholar 

  11. Shcheglov P (2012) Study of vapour-plasma plume during high power fiber laser beam influence on metals, dissertation, BAM Bundesanstalt für Materialforschung und -prüfung, ISBN: 978-3-9815134-3-1

  12. Jakobs S (2015) Laserstrahlschweißen im Vakuum - Erweiterung der Prozessgrenzen für dickwandige Bleche, Dissertation RWTH Aachen University. Aachener Berichte Fügetechnik Band 3, Shaker, Aachen, ISBN: 978-3-8440-4032-6

    Google Scholar 

  13. Schulze G (2010) Die Metallurgie des Schweißens, 4th edn. Springer Verlag, Heidelberg, ISBN: 978-3-642-03182-3

    Book  Google Scholar 

  14. Heß A (2012) Vorteile und Herausforderungen beim Laserstrahlschweißen mit Strahlquellen höchster Fokussierbarkeit. Dissertation, Universität Stuttgart, ISBN 978-3-8316-4198-7

  15. Graf T (2012) High-quality laser welding of copper using appropriate power modulation. Proceedings, Icaleo. 31(1702):531–538. ISBN: 978-0-912035-96-3

Download references

Acknowledgments

The Welding and Joining Institute of the RWTH Aachen University wishes to thank all participating partners from the industry for their support. The IGF project 17780 N of the Research Association Forschungsvereinigung Stahlanwendung e.V. (FOSTA), Sohnstraße 65, 40237 Düsseldorf and the IGF project 18707 N of the Research Association Schweißen und verwandte Verfahren e. V. (DVS), Aachener Straße 172, 40223 Düsseldorf, have been supported via the AIF e.V. within the framework of the program to promote the industrial joint research and development (IGF) by the Federal Ministry of Economic Affairs and Energy on basis of a decision by the German Bundestag

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Turner.

Additional information

Recommended for publication by Commission IV - Power Beam Processes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reisgen, U., Olschok, S., Jakobs, S. et al. Laser beam welding under vacuum of high grade materials. Weld World 60, 403–413 (2016). https://doi.org/10.1007/s40194-016-0302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-016-0302-3

Keywords (IIW Thesaurus)

Navigation