Skip to main content
Log in

Uncertainty Quantification and Propagation in Computational Materials Science and Simulation-Assisted Materials Design

  • Review Article
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

Significant advances in theory, simulation tools, advanced computing infrastructure, and experimental frameworks have enabled the field of materials science to become increasingly reliant on computer simulations. Theory-grounded computational models provide a better understanding of observed materials phenomena. At the same time, computational tools constitute an important ingredient of any framework that seeks to accelerate the materials development cycle. While simulations keep increasing in sophistication, formal frameworks for the quantification, propagation, and management of their uncertainties are required. Uncertainty analysis is fundamental to any effort to validate and verify simulations, which is often overlooked. Likewise, no simulation-driven materials design effort can be done with any level of robustness without properly accounting for the uncertainty in the predictions derived from the computational models. Here, we review some of the most recent works that have focused on the analysis, quantification, propagation, and management of uncertainty in computational materials science and ICME-based simulation-assisted materials design. Modern concepts of efficient uncertainty quantification and propagation, multi-scale/multi-level uncertainty analysis, model selection as well as model fusion are also discussed. While the topic remains relatively unexplored, there have been significant advances that herald an increased sophistication in the approaches followed for model validation and verification and model-based decision support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reprinted with permission from [10]

Fig. 4

Reprinted with permission from [29]

Fig. 5

Reprinted with permission from [29]

Fig. 6

Reprinted with permission from [68]

Fig. 7

Reprinted with permission from [24]

Fig. 8

Reprinted with permission from [86]

Fig. 9

Reprinted with permission from [37]

Fig. 10

Reprinted with permission from [36]

Fig. 11

Reproduced with permission from [29]

Fig. 12

Reprinted with permission from [98]

Fig. 13

Reprinted with permission from [98]

Fig. 14

Reprinted with permission from [102]

Fig. 15

Reproduced with permission from [34, 38]

Fig. 16

Reprinted with permission from [68]

Fig. 17

Reprinted with permission from [107]

Fig. 18

Reproduced with permission from [31]

Fig. 19

Reprinted with permission from [108]

Fig. 20

Reprinted with permission from [117]

Fig. 21

Reprinted with permission from [118]

Fig. 22

Reprinted with permission from [30]

Fig. 23

Reproduced with permission from [127]

Fig. 24

Reproduced with permission from [127]

Fig. 25

Reproduced with permission from [33]

Fig. 26

Reprinted with permission from [10]

Fig. 27

Reprinted with permission from [10]

Fig. 28

Reproduced with permission from [136]

Fig. 29

Reproduced with permission from [136]

Fig. 30

Reproduced with permission from [136]

Fig. 31
Fig. 32

Reprinted with permission from [29]

Similar content being viewed by others

References

  1. Winsberg E (2009) Computer simulation and the philosophy of science. Philos Compass 4(5):835

    Article  Google Scholar 

  2. Murr LE, Murr LE (2015) Computer simulation in materials science and engineering: definitions, types, methods, implementation, verification, and validation. In: Handbook of materials structures, properties, processing and performance. Springer, Cham, pp 1105–1121

  3. Farajpour I, Atamturktur S (2012) Error and uncertainty analysis of inexact and imprecise computer models. J Comput Civ Eng 27(4):407

    Article  Google Scholar 

  4. McDowell DL, Kalidindi SR (2016) The materials innovation ecosystem: a key enabler for the materials genome initiative. MRS Bull 41(4):326

    Article  Google Scholar 

  5. Larssen T, Huseby RB, Cosby BJ, Høst G, Høgåsen T, Aldrin M (2006) Forecasting acidification effects using a Bayesian calibration and uncertainty propagation approach. Environ Sci Technol 40(24):7841

    Article  CAS  Google Scholar 

  6. Choi HJ, McDowell D, Allen J, Mistree F (2008) An inductive design exploration method for hierarchical systems design under uncertainty. Eng Optim 40:287

    Article  Google Scholar 

  7. Arróyave R, McDowell DL (2019) Systems approaches to materials design: past, present, and future. Ann Rev Mater Res 49:103–126

    Article  CAS  Google Scholar 

  8. Du X, Chen W (2002) Efficient uncertainty analysis methods for multidisciplinary robust design. AIAA J 40(3):545

    Article  Google Scholar 

  9. Panchal JH, Kalidindi SR, McDowell DL (2013) Key computational modeling issues in integrated computational materials engineering. Comput Aided Des 45(1):4

    Article  Google Scholar 

  10. Chernatynskiy A, Phillpot SR, LeSar R (2013) Uncertainty quantification in multiscale simulation of materials: a prospective. Annu Rev Mater Res 43(1):157

    Article  CAS  Google Scholar 

  11. McDowell DL (2007) Simulation-assisted materials design for the concurrent design of materials and products. JOM 59(9):21

    Article  Google Scholar 

  12. N.R. Council et al (2008) Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. National Academies Press, Washington

  13. Horstemeyer MF (2018) Integrated computational materials engineering (ICME) for metals: concepts and case studies. Wiley, New York

    Book  Google Scholar 

  14. McDowell DL (2018) Microstructure-sensitive computational structure-property relations in materials design. In: Computational materials system design. Springer, Cham, pp 1–25

  15. Wang WY, Li J, Liu W, Liu ZK (2019) Integrated computational materials engineering for advanced materials: a brief review. Comput Mater Sci 158:42

    Article  CAS  Google Scholar 

  16. TMS (2015) Modeling across scales: a roadmapping study for connecting materials models and simulations across length and time scales. The Minerals, Metals and Materials Society, Warrendale

    Google Scholar 

  17. Kyzyurova KN, Berger JO, Wolpert RL (2018) Coupling computer models through linking their statistical emulators. SIAM/ASA J Uncertain Quantif 6(3):1151

    Article  Google Scholar 

  18. Allaire D, Willcox K (2012) Fusing information from multifidelity computer models of physical systems. In: 2012 15th international conference on information fusion, pp 2458–2465

  19. Dasey TJ, Braun JJ (2007) Information fusion and response guidance. Lincoln Lab J 17(1):153–166

    Google Scholar 

  20. Thomison WD, Allaire DL (2017) A model reification approach to fusing information from multifidelity information sources. In: 19th AIAA non-deterministic approaches conference, p 1949

  21. Frazier PI, Powell WB, Dayanik S (2008) A knowledge-gradient policy for sequential information collection. SIAM J Control Optim 47(5):2410

    Article  Google Scholar 

  22. Powell WB, Ryzhov IO (2012) Optimal learning, vol 841. Wiley, New York

    Book  Google Scholar 

  23. Ghoreishi SF, Allaire DL (2018) A fusion-based multi-information source optimization approach using knowledge gradient policies. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 1159

  24. Honarmandi P, Paulson NH, Arróyave R, Stan M (2019) Uncertainty quantification and propagation in CALPHAD modeling. Model Simul Mater Sci Eng 27(3):034003

    Article  CAS  Google Scholar 

  25. Rizzi F, Jones R, Debusschere B, Knio O (2013) Uncertainty quantification in MD simulations of concentration driven ionic flow through a silica nanopore. I. Sensitivity to physical parameters of the pore. J Chem Phys 138(19):194104

    Article  CAS  Google Scholar 

  26. Jones RE, Rizzi F, Boyce B, Templeton JA, Ostien J (2017) Plasticity models of material variability based on uncertainty quantification techniques. Technical report, Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

  27. Mortensen JJ, Kaasbjerg K, Frederiksen SL, Nørskov JK, Sethna JP, Jacobsen KW (2005) Bayesian error estimation in density-functional theory. Phys Rev Lett 95(21):216401

    Article  CAS  Google Scholar 

  28. Hanke F (2011) Sensitivity analysis and uncertainty calculation for dispersion corrected density functional theory. J Comput Chem 32(7):1424

    Article  CAS  Google Scholar 

  29. Honarmandi P, Duong TC, Ghoreishi SF, Allaire D, Arroyave R (2019) Bayesian uncertainty quantification and information fusion in CALPHAD-based thermodynamic modeling. Acta Mater 164:636

    Article  CAS  Google Scholar 

  30. Honarmandi P, Solomou A, Arroyave R, Lagoudas D (2019) Uncertainty quantification of the parameters and predictions of a phenomenological constitutive model for thermally induced phase transformation in Ni-Ti shape memory alloys. Model Simul Mater Sci Eng 27(3):034001

    Article  CAS  Google Scholar 

  31. Honarmandi P, Arroyave R (2017) Using Bayesian framework to calibrate a physically based model describing strain–stress behavior of TRIP steels. Comput Mater Sci 129:66

    Article  CAS  Google Scholar 

  32. Duong TC, Hackenberg RE, Landa A, Honarmandi P, Talapatra A, Volz HM, Llobet A, Smith AI, King G, Bajaj S et al (2016) Revisiting thermodynamics and kinetic diffusivities of uranium–niobium with Bayesian uncertainty analysis. Calphad 55:219

    Article  CAS  Google Scholar 

  33. Sanghvi M, Honarmandi P, Attari V, Duong T, Arroyave R, Allaire DL (2019) Uncertainty propagation via probability measure optimized importance weights with application to parametric materials models. In: AIAA Scitech 2019 forum, p 0967

  34. Attari V, Honarmandi P, Duong T, Sauceda DJ, Allaire D, Arroyave R (2019) Uncertainty propagation in a multiscale CALPHAD-reinforced elastochemical phase-field model. arXiv preprint arXiv:1908.00638v1

  35. Paulson NH, Jennings E, Stan M (2018) Bayesian strategies for uncertainty quantification of the thermodynamic properties of materials. ArXiv Preprint arXiv:1809.07365

  36. Otis RA, Liu ZK (2017) High-throughput thermodynamic modeling and uncertainty quantification for ICME. JOM 69(5):886

    Article  Google Scholar 

  37. Stan M, Reardon BJ (2003) A Bayesian approach to evaluating the uncertainty of thermodynamic data and phase diagrams. Calphad 27(3):319

    Article  CAS  Google Scholar 

  38. Attari V, Honarmandi P, Duong T, Sauceda DJ, Allaire D, Arroyave R (2019) Uncertainty propagation in a multiscale CALPHAD-reinforced elastochemical phase-field model. Acta Mater 183:452–470

    Article  CAS  Google Scholar 

  39. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman and Hall/CRC, Cambridge

    Google Scholar 

  40. Swiler LP (2006) Bayesian methods in engineering design problems. Technical report, Sandia National Laboratories

  41. Wagenmakers EJ, Lee M, Lodewyckx T, Iverson GJ (2008) Bayesian versus frequentist inference. In: Bayesian evaluation of informative hypotheses. Springer, New York, pp 181–207

  42. Lynch SM (2007) Introduction to applied Bayesian statistics and estimation for social scientists. Springer, Berlin

    Book  Google Scholar 

  43. Foreman-Mackey D, Hogg DW, Lang D, Goodman J (2013) EMCEE: the MCMC hammer. Publ Astron Soc Pac 125(925):306

    Article  Google Scholar 

  44. Au SK (2012) Connecting Bayesian and frequentist quantification of parameter uncertainty in system identification. Mech Syst Signal Process 29:328

    Article  Google Scholar 

  45. Feeley RP (2008) Fighting the curse of dimensionality: a method for model validation and uncertainty propagation for complex simulation models. University of California, Berkeley

    Google Scholar 

  46. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, Hoboken

    Google Scholar 

  47. Putko M, Taylor A III, Newman P, Green L (2001) Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives. In: 15th AIAA computational fluid dynamics conference, p 2528

  48. Kirk T, Malak R, Arroyave R (2018) Applying path planning to the design of additively manufactured functionally graded materials. In: ASME 2018 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers Digital Collection, pp 1–9

  49. Balachandran PV, Xue D, Theiler J, Hogden J, Lookman T (2016) Adaptive strategies for materials design using uncertainties. Sci Rep 6:19660

    Article  CAS  Google Scholar 

  50. Xue D, Balachandran PV, Yuan R, Hu T, Qian X, Dougherty ER, Lookman T (2016) Accelerated search for BaTiO\(_3\)-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning. Proc Natl Acad Sci 113(47):13301

    Article  CAS  Google Scholar 

  51. Frazier PI, Wang J (2016) Bayesian optimization for materials design. In: Information science for materials discovery and design. Springer, Cham, pp 45–75

  52. Talapatra A, Boluki S, Honarmandi P, Solomou A, Zhao G, Ghoreishi SF, Molkeri A, Allaire D, Srivastava A, Qian X et al (2019) Experiment design frameworks for accelerated discovery of targeted materials across scales. Front Mater 6:82

    Article  Google Scholar 

  53. Isukapalli S, Roy A, Georgopoulos P (1998) Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems. Risk Anal 18(3):351

    Article  CAS  Google Scholar 

  54. Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc Ser B (Stat Methodol) 63(3):425

    Article  Google Scholar 

  55. Tapia G, Johnson L, Franco B, Karayagiz K, Ma J, Arroyave R, Karaman I, Elwany A (2017) Bayesian calibration and uncertainty quantification for a physics-based precipitation model of nickel–titanium shape-memory alloys. J Manuf Sci Eng 139(7):071002

    Article  Google Scholar 

  56. Van der Waart A (1998) Asymptotic statistics. In: Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge

  57. Grimmett G, Stirzaker D (2001) Probab Random Process. Oxford University Press, Oxford

    Google Scholar 

  58. Ma JZ, Ackerman E (1993) Parameter sensitivity of a model of viral epidemics simulated with Monte Carlo techniques. II. Durations and peaks. Int J Biomed Comput 32(3):255

    Article  CAS  Google Scholar 

  59. Eggert RJ (1995) Design variation simulation of thick-walled cylinders. J Mech Des 117(2A):221

    Article  Google Scholar 

  60. Rastegar J, Fardanesh B (1990) Geometric synthesis of manipulators using the Monte Carlo method. J Mech Des 112(3):450

    Article  Google Scholar 

  61. Amaral S, Allaire D, Willcox K (2014) A decomposition-based approach to uncertainty analysis of feed-forward multicomponent systems. Int J Numer Methods Eng 100(13):982

    Article  Google Scholar 

  62. Allaire D, Willcox K (2014) Uncertainty assessment of complex models with application to aviation environmental policy-making. Transp Policy 34:109

    Article  Google Scholar 

  63. Allaire D, Noel G, Willcox K, Cointin R (2014) Uncertainty quantification of an aviation environmental toolsuite. Reliab Eng Syst Saf 126:14

    Article  Google Scholar 

  64. Chen W, Jin R, Sudjianto A (2004) Analytical uncertainty propagation via metamodels in simulation-based design under uncertainty. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 4356

  65. Schöbi R, Kersaudy P, Sudret B, Wiart J (2014) Combining polynomial chaos expansions and kriging. Technical report, Orange Labs research, ETH Zurich, Switzerland

  66. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455

    Article  Google Scholar 

  67. Couckuyt I, Dhaene T, Demeester P (2012) ooDACE toolbox. Adv Eng Softw 49(3):1

    Article  Google Scholar 

  68. Mahmoudi M, Tapia G, Karayagiz K, Franco B, Ma J, Arroyave R, Karaman I, Elwany A (2018) Multivariate calibration and experimental validation of a 3D finite element thermal model for laser powder bed fusion metal additive manufacturing. Integr Mater Manuf Innov 7(3):116

    Article  Google Scholar 

  69. Kaladhar M, Subbaiah KV, Rao CS (2012) Determination of optimum process parameters during turning of AISI 304 austenitic stainless steels using Taguchi method and ANOVA. Int J Lean Think 3(1):1

    Google Scholar 

  70. Somashekara H, Swamy NL (2012) Optimizing surface roughness in turning operation using Taguchi technique and ANOVA. Int J Eng Sci Technol 4(05):1967

    Google Scholar 

  71. Ramanujam R, Muthukrishnan N, Raju R (2011) Optimization of cutting parameters for turning Al–SiC (10p) MMC using ANOVA and grey relational analysis. Int J Precis Eng Manuf 12(4):651

    Article  Google Scholar 

  72. Ho CY, Lin ZC (2003) Analysis and application of grey relation and ANOVA in chemical–mechanical polishing process parameters. Int J Adv Manuf Technol 21(1):10

    Article  Google Scholar 

  73. Montgomery DC (2017) Design and analysis of experiments. Wiley, Hoboken

    Google Scholar 

  74. Austin PC, Naylor CD, Tu JV (2001) A comparison of a Bayesian vs. a frequentist method for profiling hospital performance. J Eval Clin Pract 7(1):35

    Article  CAS  Google Scholar 

  75. Gelman A et al (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal 1(3):515

    Article  Google Scholar 

  76. Wolpert DH (1996) Reconciling Bayesian and non-Bayesian analysis. In: Maximum entropy and bayesian methods. Springer, Dordrecht, pp 79–86

  77. Schoups G, Vrugt JA (2010) A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors. Water Resour Res 46(10):W10531

    Google Scholar 

  78. Box GE, Tiao GC (2011) Bayesian inference in statistical analysis, vol 40. Wiley, Hoboken

    Google Scholar 

  79. Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3):279

    Article  Google Scholar 

  80. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773

    Article  Google Scholar 

  81. Robert C, Casella G (2011) A short history of Markov chain Monte Carlo: subjective recollections from incomplete data. Stat Sci 26:102–115

    Article  Google Scholar 

  82. Feroz F, Hobson M, Cameron E, Pettitt A (2013) Importance nested sampling and the MultiNest algorithm. arXiv preprint arXiv:1306.2144

  83. Goodman J, Weare J (2010) Ensemble samplers with affine invariance. Commun Appl Math Comput Sci 5(1):65

    Article  Google Scholar 

  84. Jeffreys H (1935) Some tests of significance, treated by the theory of probability. Math Proc Camb Philos Soc 31(2):203

    Article  Google Scholar 

  85. Orloff J, Bloom J (2014) Massachusetts Institute of Technology. Recovered from https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading20.pdf. Accessed 14 Sept 2019

  86. Aldegunde M, Zabaras N, Kristensen J (2016) Quantifying uncertainties in first-principles alloy thermodynamics using cluster expansions. J Comput Phys 323:17

    Article  CAS  Google Scholar 

  87. Van De Walle A, Asta M, Ceder G (2002) The alloy theoretic automated toolkit: a user guide. Calphad 26(4):539

    Article  Google Scholar 

  88. Mueller T, Ceder G (2009) Bayesian approach to cluster expansions. Phys Rev B 80(2):024103

    Article  CAS  Google Scholar 

  89. Nelson LJ, Ozoliņš V, Reese CS, Zhou F, Hart GL (2013) Cluster expansion made easy with Bayesian compressive sensing. Phys Rev B 88(15):155105

    Article  CAS  Google Scholar 

  90. Rizzi F, Salloum M, Marzouk Y, Xu R, Falk M, Weihs T, Fritz G, Knio O (2011) Bayesian inference of atomic diffusivity in a binary Ni/Al system based on molecular dynamics. Multiscale Model Simul 9(1):486

    Article  Google Scholar 

  91. Kaufman L (2001) Computational thermodynamics and materials design. Calphad 25(2):141

    Article  CAS  Google Scholar 

  92. Olson GB, Kuehmann C (2014) Materials genomics: from CALPHAD to flight. Scr Mater 70:25

    Article  CAS  Google Scholar 

  93. Königsberger E (1991) Improvement of excess parameters from thermodynamic and phase diagram data by a sequential Bayes algorithm. Calphad 15(1):69

    Article  Google Scholar 

  94. Olbricht W, Chatterjee ND, Miller K (1994) Bayes estimation: a novel approach to derivation of internally consistent thermodynamic data for minerals, their uncertainties, and correlations. Part I: theory. Phys Chem Miner 21(1–2):36

    CAS  Google Scholar 

  95. Chatterjee ND, Krüger R, Haller G, Olbricht W (1998) The Bayesian approach to an internally consistent thermodynamic database: theory, database, and generation of phase diagrams. Contrib Mineral Pet 133(1–2):149

    Article  CAS  Google Scholar 

  96. Malakhov DV (1997) Confidence intervals of calculated phase boundaries. Calphad 21(3):391

    Article  CAS  Google Scholar 

  97. Duong TC, Talapatra A, Son W, Radovic M, Arróyave R (2017) On the stochastic phase stability of Ti\(_2\)AlC–Cr\(_2\)AlC. Sci Rep 7(1):5138

    Article  CAS  Google Scholar 

  98. Paulson NH, Bocklund BJ, Otis RA, Liu ZK, Stan M (2019) Quantified uncertainty in thermodynamic modeling for materials design. Acta Mater 174:9

    Article  CAS  Google Scholar 

  99. Bocklund B, Otis R, Egorov A, Obaied A, Roslyakova I, Liu ZK (2019) ESPEI for efficient thermodynamic database development, modification, and uncertainty quantification: application to Cu–Mg. MRS Commun 9:1–10

    Article  CAS  Google Scholar 

  100. Paulson NH, Jennings E, Stan M (2019) Bayesian strategies for uncertainty quantification of the thermodynamic properties of materials. Int J Eng Sci 142:74

    Article  CAS  Google Scholar 

  101. Ricciardi DE, Chkrebtii OA, Niezgoda SR (2019) Uncertainty quantification for parameter estimation and response prediction. Integr Mater Manuf Innov 8(3):273

    Article  Google Scholar 

  102. Zhang J, Poulsen SO, Gibbs JW, Voorhees PW, Poulsen HF (2017) Determining material parameters using phase-field simulations and experiments. Acta Mater 129:229

    Article  CAS  Google Scholar 

  103. Choi K, Noh Y, Lee I (2010) Reliability-based design optimization with confidence level for problems with correlated input distributions. In: 6th China–Japan–Korea joint symposium on optimization of structural and mechanical systems

  104. Yi Si, Attari V, Jeong M, Jian J, Xue S, Wang H, Arroyave R, Yu C (2018) Strain-induced suppression of the miscibility gap in nanostructured Mg\(_2\)Si–Mg\(_2\)Sn solid solutions. J Mater Chem A 6(36):17559

    Article  CAS  Google Scholar 

  105. Attari V (2019) Open phase field microstructure database. http://microstructures.net. Accessed 4 Oct 2019

  106. Honarmandi P, Johnson L, Arroyave R (2020) Bayesian probabilistic prediction of precipitation behavior in Ni-Ti shape memory alloys. Comput Mater Sci 172:109334

    Article  CAS  Google Scholar 

  107. Acar P (2019) Uncertainty quantification for Ti–7Al alloy microstructure with an inverse analytical model (AUQLin). Materials 12(11):1773

    Article  CAS  Google Scholar 

  108. Rizzi F, Jones R, Templeton J, Ostien J, Boyce B (2017) Plasticity models of material variability based on uncertainty quantification techniques. arXiv preprint arXiv:1802.01487

  109. Kang G, Kan Q (2017) Thermomechanical cyclic deformation of shape-memory alloys. In: Cyclic plasticity of engineering materials: experiments and models. Wiley & Sons, New York, pp 405–530

  110. Kan Q, Kang G (2010) Constitutive model for uniaxial transformation ratchetting of super-elastic NiTi shape memory alloy at room temperature. Int J Plast 26(3):441

    Article  CAS  Google Scholar 

  111. Oehler S, Hartl D, Lopez R, Malak R, Lagoudas D (2012) Design optimization and uncertainty analysis of SMA morphing structures. Smart Mater Struct 21(9):094016

    Article  Google Scholar 

  112. Martowicz A, Bryła J, Uhl T (2016) Uncertainty quantification for the properties of a structure made of SMA utilising numerical model. In: Proceedings of the conference on noise and vibration engineering ISMA 2016 and 5th edition of the international conference on uncertainly in structural dynamics USD, pp 4129–4140

  113. Islam A, Karadoğan E (2019) Sensitivity and uncertainty analysis of one-dimensional tanaka and Liang–Rogers shape memory alloy constitutive models. Materials 12(10):1687

    Article  CAS  Google Scholar 

  114. Tanaka K, Kobayashi S, Sato Y (1986) Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys. Int J Plast 2(1):59

    Article  CAS  Google Scholar 

  115. Liang C, Rogers CA (1997) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 8(4):285

    Article  Google Scholar 

  116. Crews JH, McMahan JA, Smith RC, Hannen JC (2013) Quantification of parameter uncertainty for robust control of shape memory alloy bending actuators. Smart Mater Struct 22(11):115021

    Article  Google Scholar 

  117. Crews JH, Smith RC (2014) Quantification of parameter and model uncertainty for shape memory alloy bending actuators. J Intell Mater Syst Struct 25(2):229

    Article  Google Scholar 

  118. Enemark S, Santos IF, Savi MA (2016) Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs. J Intell Mater Syst Struct 27(20):2721

    Article  Google Scholar 

  119. Tschopp MA, Hernandez-Rivera E (2017) Quantifying similarity and distance measures for vector-based datasets: histograms, signals, and probability distribution functions. ARL-TN-0810, US Army Research Laboratory Aberdeen Proving Ground United States, US Army Research Laboratory Aberdeen Proving Ground United States

  120. Simpson TW, Lin DK, Chen W (2001) Sampling strategies for computer experiments: design and analysis. Int J Reliab Appl 2(3):209

    Google Scholar 

  121. Allaire D, Willcox K (2010) Surrogate modeling for uncertainty assessment with application to aviation environmental system models. AIAA J 48(8):1791

    Article  Google Scholar 

  122. Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619

    Article  Google Scholar 

  123. Foo J, Karniadakis GE (2010) Multi-element probabilistic collocation method in high dimensions. J Comput Phys 229(5):1536

    Article  CAS  Google Scholar 

  124. Wan X, Karniadakis GE (2006) Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J Sci Comput 28(3):901

    Article  Google Scholar 

  125. Sugiyama M, Suzuki T, Kanamori T (2012) Density ratio estimation in machine learning. Cambridge University Press, Cambridge

    Book  Google Scholar 

  126. Robert CP, Casella G (2005) Monte Carlo statistical methods. Springer texts in statistics. Springer, Secaucus

    Google Scholar 

  127. Sanghvi MN (2019) Distribution optimal importance weights for efficient uncertainty propagation through model chains. Master’s thesis, Texas A&M University, College Station, TX, USA

  128. Grkazka M, Janiszewski J (2012) Identification of Johnson–Cook equation constants using finite element method. Eng Trans 60(3):215

    Google Scholar 

  129. Schulze V, Zanger F (2011) Numerical analysis of the influence of Johnson–Cook-material parameters on the surface integrity of Ti–6Al–4 V. Procedia Eng 19:306

    Article  CAS  Google Scholar 

  130. Liu WK, Siad L, Tian R, Lee S, Lee D, Yin X, Chen W, Chan S, Olson GB, Lindgen LE et al (2009) Complexity science of multiscale materials via stochastic computations. Int J Numer Methods Eng 80(6–7):932

    Article  Google Scholar 

  131. Kouchmeshky B, Zabaras N (2009) The effect of multiple sources of uncertainty on the convex hull of material properties of polycrystals. Comput Mater Sci 47(2):342

    Article  CAS  Google Scholar 

  132. Kouchmeshky B, Zabaras N (2010) Microstructure model reduction and uncertainty quantification in multiscale deformation processes. Comput Mater Sci 48(2):213

    Article  CAS  Google Scholar 

  133. Koslowski M, Strachan A (2011) Uncertainty propagation in a multiscale model of nanocrystalline plasticity. Reliab Eng Syst Saf 96(9):1161

    Article  Google Scholar 

  134. Reddy S, Gautham B, Das P, Yeddula RR, Vale S, Malhotra C (2017) An ontological framework for integrated computational materials engineering. In: Proceedings of the 4th world congress on integrated computational materials engineering (ICME 2017). Springer, pp 69–77

  135. Brough DB, Wheeler D, Warren JA, Kalidindi SR (2017) Microstructure-based knowledge systems for capturing process-structure evolution linkages. Curr Opin Solid State Mater Sci 21(3):129

    Article  CAS  Google Scholar 

  136. Mahmoudi M (2019) Process monitoring and uncertainty quantification for laser powder bed fusion additive manufacturing. PhD thesis, Texas A&M University, College Station, TX, USA

  137. Karayagiz K, Elwany A, Tapia G, Franco B, Johnson L, Ma J, Karaman I, Arróyave R (2019) Numerical and experimental analysis of heat distribution in the laser powder bed fusion of Ti–6Al–4V. IISE Trans 51(2):136

    Article  Google Scholar 

  138. Karayagiz K, Johnson L, Seede R, Attari V, Zhang B, Huang X, Ghosh S, Duong T, Karaman I, Elwany A et al (2019) Finite interface dissipation phase field modeling of Ni–Nb under additive manufacturing conditions. Available at SSRN 3406951

  139. Mahmoudi M, Karayagiz K, Johnson L, Seede R, Karaman I, Arróyave R, Elwany A (2019) Calibration of hierarchical computer models with unobservable variables for metal additive manufacturing. Addit Manuf (in review)

  140. Urbina A, Mahadevan S, Paez TL (2012) A Bayes network approach to uncertainty quantification in hierarchically developed computational models. Int J Uncertain Quantif 2(2):173–193

    Article  Google Scholar 

  141. DeCarlo EC, Smarslok BP, Mahadevan S (2016) Segmented Bayesian calibration of multidisciplinary models. AIAA J 54:3727–3741

    Article  Google Scholar 

  142. Nielsen TD, Jensen FV (2009) Bayesian networks and decision graphs. Springer, Berlin

    Google Scholar 

  143. Kennedy MC, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1

    Article  Google Scholar 

  144. Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444

    Article  CAS  Google Scholar 

  145. Chung HS, Alonso J (2002) Using gradients to construct cokriging approximation models for high-dimensional design optimization problems. In: 40th AIAA aerospace sciences meeting and exhibit, p 317

  146. Patra A, Batra R, Chandrasekaran A, Kim C, Huan TD, Ramprasad R (2020) A multi-fidelity information-fusion approach to machine learn and predict polymer bandgap. Comput Mater Sci 172:109286

    Article  CAS  Google Scholar 

  147. Talapatra A, Boluki S, Duong T, Qian X, Dougherty E, Arróyave R (2018) Autonomous efficient experiment design for materials discovery with Bayesian model averaging. Phys Rev Mater 2(11):113803

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support of the National Science Foundation (NSF) [Grant nos. CMMI-1534534, CMMI-1663130, DGE-1545403] as well as the Army Research Laboratory (ARL) through [Grant No. W911NF-132-0018]. Moreover, the authors would like to thank Prof. Alaa Elwany and Dr. Mohamad Mahmoudi for useful discussion on Bayesian networks applied to calibration of ICME model chains as well as for providing some of the figures used in this work. The authors also would like to thank Prof. Douglas Allaire and Mr. Meet Nilesh Sanghvi for useful discussions on the use of optimal importance weights approaches for the efficient propagation of uncertainty through model chains as well as for providing some of the figures reproduced here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Honarmandi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honarmandi, P., Arróyave, R. Uncertainty Quantification and Propagation in Computational Materials Science and Simulation-Assisted Materials Design. Integr Mater Manuf Innov 9, 103–143 (2020). https://doi.org/10.1007/s40192-020-00168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-020-00168-2

Keywords

Navigation