Numerical Prediction of the Microstructure and Stress Evolution During Surface Grinding of AISI 52100 (DIN 100Cr6)

  • Ali RajaeiEmail author
  • Bengt Hallstedt
  • Christoph Broeckmann
  • Sebastian Barth
  • Daniel Trauth
  • Thomas Bergs
Technical Article


Grinding is one of the most important finishing processes in industrial production. During grinding, the workpiece is subjected to thermomechanical loads. Thermal damage can occur in terms of microstructure changes due to a critical temperature history. A holistic model of the relevant physical load fields and their interactions would help describe and predict the influence of grinding loads on the residual stresses in the surface zone of the workpiece. In this paper, a very promising approach is introduced to simulate grinding of the hardened and tempered bearing steel AISI 52100 using the Finite Element Method (FEM). A material model was developed to describe the thermomechanical and metallurgical changes of the bearing steel under the process loads. Material properties were modeled depending on the temperature and microstructure changes. Temperature gradients, microstructure evolution, thermal, and phase transformation strains were integrated in the model to predict the residual stress state after grinding. Experimental and simulative investigations were conducted for pendulum grinding, and the measured and simulated residuals stresses were compared. The depth of the subsurface zone, where thermally influenced microstructural changes occur, varied with changes of the process parameters. Experiments and simulations showed compressive stresses in the re-hardened zone and tensile stresses in the tempered area.


Grinding Residual stresses Finite element method Phase transformation Grind hardening 


Funding Information

The research project is funded by the German Research Foundation (Deutsche forschungsgemeinschaft - DFG) “Quantitative Beschreibung des Eigenspannungsverlaufs beim Tief- und Pendelschleifen von 100Cr6” (BR 1844/12-1, KL 500/122-1).


  1. 1.
    Brinksmeier E (1991) Prozess- und Werkstückqualität in der Feinbearbeitung. VDI-Verl, DüsseldorfGoogle Scholar
  2. 2.
    Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister HW, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. CIRP Ann 55:667–696. CrossRefGoogle Scholar
  3. 3.
    Doman DA, Warkentin A, Bauer R (2009) Finite element modeling approaches in grinding. Int J Mach Tools Manuf 49:109–116. CrossRefGoogle Scholar
  4. 4.
    Carsten H (2009) Schleifprozesse verstehen: Zum Stand der Modellbildung und Simulation sowie unterschtützender experimeteller Methoden. Habilitation, Stiftung Institut für Werkstofftechnik, BremenGoogle Scholar
  5. 5.
    Zhang L, Mahdi M (1995) Applied mechanics in grinding—IV. The mechanism of grinding induced phase transformation. Int J Mach Tools Manuf 35:1397–1409. CrossRefGoogle Scholar
  6. 6.
    Mahdi M, Zhang L (1999) Applied mechanics in grinding. Part 7: residual stresses induced by the full coupling of mechanical deformation, thermal deformation and phase transformation. Int J Mach Tools Manuf 39:1285–1298. CrossRefGoogle Scholar
  7. 7.
    Mahdi M, Zhang L (2000) A numerical algorithm for the full coupling of mechanical deformation, thermal deformation and phase transformation in surface grinding. Comput Mech 26:148–156. CrossRefGoogle Scholar
  8. 8.
    Brinksmeier E, Heinzel C, Christian B, Wilke T (2003) Simulation of the temperature distribution and metallurgical transformations in grinding by using the finite-element-method. Prod Eng 10:9–14Google Scholar
  9. 9.
    Salonitis K, Chryssolouris G (2007) Thermal analysis of grind-hardening process. Int J Manuf Technol Manag 12:72–92. CrossRefGoogle Scholar
  10. 10.
    Weiß M, Klocke F, Barth S, Rasim M, Mattfeld P (2017) Detailed analysis and description of grinding wheel topographies. J Manuf Sci Eng 139:1–9. CrossRefGoogle Scholar
  11. 11.
    Duscha M (2014) Beschreibung des Eigenspannungszustandes beim Pendel- und Schnellhubschleifen. Dissertation, RWTH Aachen University, Aachen.Google Scholar
  12. 12.
    Bhadeshia H, Honeycombe R (2017) Steels: microstructure and properties. Elsevier Ltd., OxfordGoogle Scholar
  13. 13.
    Shah A (2011) Prediction of residual stresses due to grinding with phase transformation. Dissertation, Lyon.Google Scholar
  14. 14.
    Simsir C (2014) Modeling and Simulation of Steel Heat Treatment-prediction of Microstructure, Distortion, Residual stress and Cracking. In: Dosset JL and Totten GE (eds) ASM Handbook: Steel Heat Treating Technologies, Vol. 4B. Materials Park, Ohio.
  15. 15.
    Fischer FD, Sun WP, Tanaka K (1996) Transformation-induced plasticity (TRIP). Appl Mech Rev 49:317CrossRefGoogle Scholar
  16. 16.
    Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224. CrossRefGoogle Scholar
  17. 17.
    Barmak K (2010) A commentary on: reaction kinetics in processes of nucleation and growth. Metall Mater Trans A 41:2711–2775. CrossRefGoogle Scholar
  18. 18.
    Surm H, Kessler O, Hunkel M, Hoffmann F, Mayr P (2004) Modelling the ferrite/carbide → austenite transformation of hypoeutectoid and hypereutectoid steels. J Phys IV France 120:111–119. CrossRefGoogle Scholar
  19. 19.
    Eser A, Broeckmann C, Simsir C (2016) Multiscale modeling of tempering of AISI H13 hot-work tool steel – part 2: coupling predicted mechanical properties with FEM simulations. Comput Mater Sci 113:292–300. CrossRefGoogle Scholar
  20. 20.
    Li H, Gai K, He L, Zhang C, Cui H, Li M (2016) Non-isothermal phase-transformation kinetics model for evaluating the austenitization of 55CrMo steel based on Johnson–Mehl–Avrami equation. Mater Des 92:731–741. CrossRefGoogle Scholar
  21. 21.
    Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7:59–60. CrossRefGoogle Scholar
  22. 22.
    Leblond JB, Mottet G, Devaux JC (1986) A theoretical and numerical approach to the plastic behaviour of steels during phase transformations—II. Study of classical plasticity for ideal-plastic phases. J Mech Phys Solids 34:411–432. CrossRefGoogle Scholar
  23. 23.
    Leblond JB, Mottet G, Devaux JC (1986) A theoretical and numerical approach to the plastic behaviour of steels during phase transformations—I. Derivation of general relations. J Mech Phys Solids. 34:411–432Google Scholar
  24. 24.
    Schmitz GJ, Engstrom A, Bernhardt R, Prahl U, Adam L, Seyfarth J, Apel M, de Saracibar CA, Korzhavyi P, Ågren J, Patzak B (2016) Software solutions for ICME. JOM 68:70–76. CrossRefGoogle Scholar
  25. 25.
    Jablonka A, Harste K, Schwerdtfeger K (1991) Thermomechanical properties of iron and iron-carbon alloys: density and thermal contraction. Steel Res 62:24–33. CrossRefGoogle Scholar
  26. 26.
    Acht C, Dalgic M, Frerichs F, Hunkel M, Irretier A, Lübben T, Surm H (2008) Ermittlung der Materialdaten zur Simulation des Durchhärtens von Komponenten aus 100Cr6. HTM 63:234–244. CrossRefGoogle Scholar
  27. 27.
    Orlich J, Rosen A, Wieast P (1973) Atlas zur Wärmebehandlung der Stähle. Band 3: Zeit – Temperatur – Austenitisierung – Schaubilder. Stahleisen mbH, DüsseldorfGoogle Scholar
  28. 28.
    Sallem H, Hamdi H (2015) Analysis of measured and predicted residual stresses induced by finish cylindrical grinding of high speed steel with CBN wheel. Procedia CIRP 31:381–386. CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ali Rajaei
    • 1
    Email author
  • Bengt Hallstedt
    • 1
  • Christoph Broeckmann
    • 1
  • Sebastian Barth
    • 2
  • Daniel Trauth
    • 2
  • Thomas Bergs
    • 2
  1. 1.Institute of Applied Powder Metallurgy and Ceramics (IAPK) at RWTH Aachen University e.VAachenGermany
  2. 2.Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen UniversityAachenGermany

Personalised recommendations