Skip to main content

Effect of Sb-site nonstoichiometry on the structure and microwave dielectric properties of Li3Mg2Sb1−xO6 ceramics

Abstract

The non-stoichiometric Li3Mg2Sb1−xO6 (0.05 ⩽ x ⩽ 0.125) compounds have been prepared via the mixed oxide method. The influences of Sb nonstoichiometry on the sintering behavior, microstructure, phase composition along with microwave dielectric performances for Li3Mg2Sb1−xO6 ceramics were studied. Combined with X-ray diffraction (XRD) and Raman spectra, it was confirmed that phase composition could not be affected by the Sb nonstoichiometry and almost pure phase Li3Mg2SbO6 was formed in all compositions. Appropriate Sb-deficiency in Li3Mg2SbO6 not only lowered its sintering temperature but also remarkably improved its Q×f value. In particular, non-stoichiometric Li3Mg2Sb0.9O6 ceramics sintered at 1250 °C/5 h owned seldom low dielectric constant εr = 10.8, near-zero resonant frequency temperature coefficient τf = −8.0 ppm/°C, and high quality factor Q×f = 86,300 GHz (at 10.4 GHz). This study provides an alternative approach to ameliorate its dielectric performances for Li3Mg2SbO6-based compounds through defect-engineering.

References

  1. Zhang X, Tang B, Fang ZX, et al. Structural evolution and microwave dielectric properties of a novel Li3Mg2−x/3 Nb1−2x/3TixO6 system with a rock salt structure. Inorg Chem Front 2018, 5: 3113–3125.

    CAS  Article  Google Scholar 

  2. Zhang YH, Sun JJ, Dai N, et al. Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics. J Eur Ceram Soc 2019, 39: 1127–1131.

    CAS  Article  Google Scholar 

  3. Reaney IM, Iddles D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Am Ceram Soc 2006, 89: 2063–2072.

    CAS  Google Scholar 

  4. Gu FF, Chen GH, Li XQ, et al. Structural and microwave dielectric properties of the (1−x)Li3NbO4−xCa0.8Sr0.2TiO3 thermally stable ceramics. Mater Chem Phys 2015, 167: 354–359.

    CAS  Article  Google Scholar 

  5. Zou ZY, Chen ZH, Lan XK, et al. Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba2Zn(1+x)Si2O(7+x) ceramics. J Eur Ceram Soc 2017, 37: 3065–3071.

    CAS  Article  Google Scholar 

  6. Dong MZ, Yue ZX, Zhuang H, et al. Microstructure and microwave dielectric properties of TiO2-doped Zn2SiO4 ceramics synthesized through the sol-gel process. J Am Ceram Soc 2008, 91: 3981–3985.

    CAS  Article  Google Scholar 

  7. Huang CL, Tseng YW. Structure, dielectric properties, and applications of CaTiO3-modified Ca4MgNb2TiO12 ceramics at microwave frequency. J Am Ceram Soc 2011, 94: 1824–1828.

    CAS  Article  Google Scholar 

  8. Castellanos M, Gard JA, West AR. Crystal data for a new family of phases, Li3Mg2XO6: X = Nb, Ta, Sb. J Appl Cryst 1982, 15: 116–119.

    CAS  Article  Google Scholar 

  9. Yao GG, Pei CJ, Gong Y, et al. Microwave dielectric properties of temperature stable (1−x)Li3Mg2SbO6xBa3(VO4)2 composite ceramics. J Mater Sci: Mater Electron 2018, 29: 9979–9983.

    CAS  Google Scholar 

  10. Pei CJ, Hou CD, Li Y, et al. A low εr and temperature-stable Li3Mg2SbO6 microwave dielectric ceramics. J Alloys Compd 2019, 792: 46–49.

    CAS  Article  Google Scholar 

  11. Wang SY, Sun Q, Devakumar B, et al. Mn4+-activated Li3Mg2SbO6 as an ultrabright fluoride-free red-emitting phosphor for warm white light-emitting diodes. RSC Adv 2019, 9: 3429–3435.

    CAS  Article  Google Scholar 

  12. Zhong JS, Chen X, Chen DQ, et al. A novel rare-earth free red-emitting Li3Mg2SbO6: Mn4+ phosphor-in-glass for warm w-LEDs: Synthesis, structure, and luminescence properties. J Alloys Compd 2019, 773: 413–422.

    CAS  Article  Google Scholar 

  13. Zhang P, Wu SX, Xiao M. Effect of Sb5+ ion substitution for Nb5+ on crystal structure and microwave dielectric properties for Li3Mg2NbO6 ceramics. J Alloys Compd 2018, 766: 498–505.

    CAS  Article  Google Scholar 

  14. Guo WJ, Zhang J, Luo Y, et al. Microwave dielectric properties and thermally stimulated depolarization of Al-doped Ba4(Sm,Nd)9.33Ti18O54 ceramics. J Am Ceram Soc 2019, 102: 5494–5502.

    CAS  Article  Google Scholar 

  15. Li B, Zheng JG, Li W. Enhanced effect of vanadium ions non-stoichiometry on microwave dielectric properties of Ca5Co4V6+xO24 ceramics. Mater Chem Phys 2018, 207: 282–288.

    CAS  Article  Google Scholar 

  16. Belous A, Ovchar O, Jancar B, et al. The effect of non-stoichiometry on the microstructure and microwave dielectric properties of the columbites A2+Nb2O6. J Eur Ceram Soc 2007, 27: 2933–2936.

    CAS  Article  Google Scholar 

  17. Li JM, Fan CG, Cheng ZX, et al. Influence of Zn nonstoichiometry on the phase structure, microstructure and microwave dielectric properties of Nd(Zn0.5Ti0.5)O3 ceramics. J Alloys Compd 2019, 793: 385–392.

    CAS  Article  Google Scholar 

  18. Pang LX, Zhou D, Yue ZX. Temperature independent low firing [Ca025(Nd1−xBix)05]MoO4 (0.2 ⩽ x ⩽ 0.8) microwave dielectric ceramics. J Alloys Compd 2019, 781: 385–388.

    CAS  Article  Google Scholar 

  19. Pan WG, Cao MH, Qi JL, et al. Defect structure and dielectric behavior in SrTi1−x(Zn1/3Nb2/3)xO3 ceramics. J Alloys Compd 2019, 784: 1303–1310.

    CAS  Article  Google Scholar 

  20. Muhammad R, Khesro A. Influence of A-site nonstopichiometry on the electrical properties of BT-BMT. J Am Ceram Soc 2017, 100: 1091–1097.

    CAS  Article  Google Scholar 

  21. Kim ES, Chun BS, Freer R, et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+:Ca,Pb,Ba; B6+:Mo,W) ceramics. J Eur Ceram Soc 2010, 30: 1731–1736.

    CAS  Article  Google Scholar 

  22. Wang Y, Tang TL, Zhang JT, et al. Preparation and microwave dielectric properties of new low-loss NiZrTa2O8 ceramics. J Alloys Compd 2019, 778: 576–578.

    CAS  Article  Google Scholar 

  23. Hardcastle FD, Wachs IE. Determination of molybdenum-oxygen bond distances and bond orders by Raman spectroscopy. J Raman Spectrosc 1990, 21: 683–691.

    CAS  Article  Google Scholar 

  24. Wu SP, Chen DF, Jiang C, et al. Synthesis of monoclinic CaSnSiO5 ceramics and their microwave dielectric properties. Mater Lett 2013, 91: 239–241.

    CAS  Article  Google Scholar 

  25. Song JB, Song KX, Wei JS, et al. Microstructure characteristics and microwave dielectric properties of calcium apatite ceramics as microwave substrates. J Alloys Compd 2018, 731: 264–270.

    CAS  Article  Google Scholar 

  26. Bian JJ, Song GX, Yan K. Structure and microwave dielectric properties of Ba1+x[(Co0.7Zn0.3)1/3Nb2/3]O3 (−0.015 ⩽ x ⩽ 0.015). J Eur Ceram Soc 2007, 27: 2817–2821.

    CAS  Article  Google Scholar 

  27. George S, Sebastian MT. Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A = Mg, Zn) ceramics. J Am Ceram Soc 2010, 93: 2164–2166.

    CAS  Article  Google Scholar 

  28. Gurevich VL, Tagantsev AK. Intrinsic dielectric loss in crystals. Adv Phys 1991, 40: 719–767.

    CAS  Article  Google Scholar 

  29. Wang KG, Zhou HF, Liu XB, et al. A lithium aluminium borate composite microwave dielectric ceramic with low permittivity, near-zero shrinkage, and low sintering temperature. J Eur Ceram Soc 2019, 39: 1122–1126.

    Article  Google Scholar 

  30. Kai C, Li CC, Xiang HC, et al. Phase formation and microwave dielectric properties of BiMVO5 (M = Ca, Mg) ceramics potential for low temperature co-fired ceramics application. J Am Ceram Soc 2019, 102: 362–371.

    CAS  Article  Google Scholar 

  31. Kim SS, Na HG, Kwon YJ, et al. Synthesis and room-temperature NO2 sensing properties of Sb2O5 nanowires. Met Mater Int 2015, 21: 415–121.

    CAS  Article  Google Scholar 

  32. Freer R, Azough F. Microstructural engineering of microwave dielectric ceramics. J Eur Ceram Soc 2008, 28: 1433–1441.

    CAS  Article  Google Scholar 

  33. Pullar RC, Penn SJ, Wang XR, et al. Dielectric loss caused by oxygen vacancies in titania ceramics. J Eur Ceram Soc 2009, 29: 419–424.

    CAS  Article  Google Scholar 

  34. Surendran KP, Sebastian MT, Mohanan P, et al. Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba(Mg0.33Ta0.67)O3. Chem Mater 2005, 17: 142–151.

    CAS  Article  Google Scholar 

  35. Zhang TW, Zuo RZ. Effect of Li2O−V2O5 addition on the sintering behavior and microwave dielectric properties of Li3(Mg1−xZnx)2NbO6 ceramics. Ceram Int 2014, 40: 15677–15684.

    CAS  Article  Google Scholar 

  36. Desu SB, O’Bryan HM. Microwave loss quality of BaZn13Ta2/3O3 ceramics. J Am Ceram Soc 1985, 68: 546–551.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Grant No. 51402235), China Postdoctoral Science Foundation (2015M582696), Science and Technology Plan Project of Xi’an Bureau of Science and Technology (GXYD17.19), Education Department of Shaanxi Province (18JK0711), and Innovation Funds of Graduate Programs of Xi’an University of Posts and Telecommunications (CXJJLD2019020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoguang Yao.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pei, C., Tan, J., Li, Y. et al. Effect of Sb-site nonstoichiometry on the structure and microwave dielectric properties of Li3Mg2Sb1−xO6 ceramics. J Adv Ceram 9, 588–594 (2020). https://doi.org/10.1007/s40145-020-0397-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40145-020-0397-2

Keywords

  • microwave dielectric properties
  • ceramics
  • sintering
  • antimony compounds