Skip to main content
Log in

A novel temperature stable and high Q microwave dielectric ceramic in Li3(Mg1−xMnx)2NbO6 system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The compositions of Li3(Mg1−xMnx)2NbO6 ceramics were prepared by the conventional solid state reaction method. The effects of Mn2+ substitution on the microstructure, sintering behavior and microwave dielectric properties of Li3(Mg1−xMnx)2NbO6 ceramics were investigated systematically. The XRD patterns revealed that all the specimens sintered at 1075–1200 °C remained a single phase with orthorhombic structure. The obtained microwave dielectric properties indicated that appropriate amount of Mn2+ substitution for Mg2+ could significantly promote the grain growth and densify Li3Mg2NbO6 ceramics. The permittivity and Q × f values were strongly dependent on the bulk density and grain size, respectively. And near zero τ f values could be realized in the Li3(Mg1−xMnx)2NbO6 (0.02 ≦ x ≦ 0.08) compounds sintered at 1125 °C. To sum up, the x = 0.02 sample sintered at 1125 °C for 4 h exhibited excellent microwave dielectric properties of εr ~ 15.22, Q × f ~110,582 GHz, τ f ~−4.57 ppm/°C which demonstrated that the Li3(Mg0.98Mn0.02)2NbO6 ceramic would be a novel temperature stable and high Q material for microwave device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57 (2008)

    Article  Google Scholar 

  2. M. Makimoto, S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application (Springer, Berlin, 2001)

  3. K. Wakino, T. Nishikawa, S. Tamura, Y. Ishikawa, IEEE MTT-S International Microwave Symposium Digest (1975)

  4. S. George, M.T. Sebastian, J. Eur. Ceram. Soc. 30, 2585–2592 (2010)

    Article  Google Scholar 

  5. Z.X. Fang, B. Tang, F. Si, S.R. Zhang, Ceram. Int. 43, 1682–1687 (2017)

    Article  Google Scholar 

  6. H.M.J. O’Bryan, J.J. Thomson, J.K. Plourde, J. Am. Ceram. Soc. 57, 450–453 (1974)

    Article  Google Scholar 

  7. J.K. Plourde, D.F. Linn, H.M.J. O’Bryan, J.J. Thompson, J. Am. Ceram. Soc. 58, 418–420 (1975)

    Article  Google Scholar 

  8. H. Tamura, J. Am. Ceram. Soc. Bull. 73, 92–95 (1994)

    Google Scholar 

  9. C.L. Huang, W.R. Yang, J. Alloy. Compd. 509, 2269–2272 (2011)

    Article  Google Scholar 

  10. Z.F. Fu, P. Liu, J.L. Ma, X.M. Chen, H.W. Zhang, Mater. Lett. 164, 436–439 (2016)

    Article  Google Scholar 

  11. J. Song, J. Zhang, R.Z. Zuo, Ceram. Int. 43 2246–2251, (2017)

    Article  Google Scholar 

  12. L.L. Yuan, J.J. Bian, Ferroelectrics 387 (2009) 123–129

    Article  Google Scholar 

  13. T.W. Zhang, R.Z. Zuo, Ceram. Int. 40 (2014) 15677–15684

    Article  Google Scholar 

  14. T.W. Zhang, R.Z. Zuo, C. Zhang, Mater. Res. Bull. 68, 109–114 (2015)

    Article  Google Scholar 

  15. P. Zhang, X.Y. Zhao, Y.G. Zhao, J. Mater. Sci. 27, 6395–6398 (2016)

    Google Scholar 

  16. H.T. Wu, E.S. Kim, J. Alloy. Compd. 669, 134–140 (2016)

    Article  Google Scholar 

  17. Y.G. Zhao, P. Zhang, J. Alloy. Compd. 658, 744–748 (2016)

    Article  Google Scholar 

  18. R. Roy, J. Am. Ceram. Soc. 89, 557–561 (2006)

    Article  Google Scholar 

  19. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Article  Google Scholar 

  20. C.L. Huang, J.Y. Chen, J. Am. Ceram. Soc. 92, 675–678 (2009)

    Article  Google Scholar 

  21. D. Kajfez, S. Chebolu, M.R. Abdul-Gaffoor, A.A. Kishk, IEEE Trans. Microw. Theory Tech. 47, 367–731 (1999)

    Article  Google Scholar 

  22. R.D. Shannon, G.R. Rossman, Am. Miner. 77, 94–100 (1992)

    Google Scholar 

  23. E.S. Kim, S.H. Kim, K.H. Yoon, J. Ceram. Soc. Jpn. 112 (2004) 1645–1649

    Google Scholar 

  24. C.L. Huang, J.J. Wang et al., J. Am. Ceram. Soc. 90, 858–862 (2007)

    Article  Google Scholar 

  25. H.S. Park, K.H. Yoon, E.S. Kim, Mater. Chem. Phys. 79, 181–183 (2003)

    Article  Google Scholar 

  26. E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, J. Eur. Ceram. Soc. 30, 1731–1736 (2010)

    Article  Google Scholar 

  27. J.D. Breeze, J.M. Perkins, D.W. McComb, N.M. Alford, J. Am. Ceram. Soc. 92, 671–674 (2009)

    Article  Google Scholar 

  28. N.M. Alford, S.J. Penn, J. Appl. Phys. 80, 5895–5898 (1996)

    Article  Google Scholar 

  29. C.L. Huang, S.H. Liu, J. Am. Ceram. Soc. 91, 3428–3430 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61671323) and Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education (Tianjin University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Liu, L., Xiao, M. et al. A novel temperature stable and high Q microwave dielectric ceramic in Li3(Mg1−xMnx)2NbO6 system. J Mater Sci: Mater Electron 28, 12220–12225 (2017). https://doi.org/10.1007/s10854-017-7037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7037-9

Keywords

Navigation