Jaffe B, Roth RS, Marzullo S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J Appl Phys 1954, 25: 809–810.
Article
Google Scholar
Park S-E, Shrout TR. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 1997, 82: 1804–1811.
Article
Google Scholar
Fan H, Kim H-E. Effect of lead content on the structure and electrical properties of Pb((Zn1/3Nb2/3)0.5(Zr0.47Ti0.53)0.5)O3 ceramics. J Am Ceram Soc 2001, 84: 636–638.
Article
Google Scholar
Egerton L, Dillom DM. Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc 1959, 42: 438–442.
Article
Google Scholar
Zuo R, Fang X, Ye C. Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3-(Bi0.5Na0.5)TiO3 ceramics. Appl Phys Lett 2007, 90: 092904.
Article
Google Scholar
Haertling GH. Properties of hot-pressed ferroelectric alkali niobate ceramics. J Am Ceram Soc 1967, 50: 329–330.
Article
Google Scholar
Wang R, Xie R, Sekiya T, et al. Piezoelectric properties of spark-plasma-sintered (Na0.5K0.5)NbO3-PbTiO3 ceramics. Jpn J Appl Phys 2002, 41: 7119–7122.
Article
Google Scholar
Matsubara M, Kikuta K, Hirano S. Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3-K5.4CuTa10O29 ceramics. J Appl Phys 2005, 97: 114105.
Article
Google Scholar
Takao H, Saito Y, Aoki Y, et al. Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. J Am Ceram Soc 2006, 89: 1951–1956.
Article
Google Scholar
Yang M-R, Hong C-S, Tsai C-C, et al. Effect of sintering temperature on the piezoelectric and ferroelectric characteristics of CuO doped 0.95(Na0.5K0.5)NbO3-0.05LiTaO3 ceramics. J Alloys Compd 2009, 488: 169–173.
Article
Google Scholar
Park S-H, Ahn C-W, Nahm S, et al. Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn J Appl Phys 2004, 43: L1072–L1074.
Article
Google Scholar
Kosec M, Kolar D. On activated sintering and electrical properties of NaKNbO3. Mater Res Bull 1975, 10: 335–339.
Article
Google Scholar
Tashiro S, Nagamatsu H, Nagata K. Sinterability and piezoelectric properties of KNbO3 ceramics after substituting Pb and Na for K. Jpn J Appl Phys 2002, 41: 7113–7118.
Article
Google Scholar
Guo Y, Kakimoto K, Ohsato H. Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-SrTiO3 ceramics. Solid State Commun 2004, 129: 279–284.
Article
Google Scholar
Kakimoto K, Masuda I, Ohsato H. Ferroelectric and piezoelectric properties of KNbO3 ceramics containing small amounts of LaFeO3. Jpn J Appl Phys 2003, 42: 6102–6105.
Article
Google Scholar
Choi SW, Shrout TR, Jang SJ, et al. Morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Mater Lett 1989, 8: 253–255.
Article
Google Scholar
Kim M-S, Lee D-S, Park E-C, et al. Effect of Na2O additions on the sinterability and piezoelectric properties of lead-free 95(Na0.5K0.5)NbO3-5LiTaO3 ceramics. J Eur Ceram Soc 2007, 27: 4121–4124.
Article
Google Scholar
Choi S-Y, Kang S-JL. Sintering kinetics by structural transition at grain boundaries in barium titanate. Acta Mater 2004, 52: 2937–2943.
Article
Google Scholar
Kim M-S, Jeong S-J, Song J-S. Microstructures and piezoelectric properties in the Li2O-excess 0.95(Na0.5K0.5)NbO3-0.05LiTaO3 ceramics. J Am Ceram Soc 2007, 90: 3338–3340.
Article
Google Scholar
Park CW, Yoon DY. Abnormal grain growth in alumina with anorthite liquid and the effect of MgO addition. J Am Ceram Soc 2002, 85: 1585–1593.
Article
Google Scholar
Kim M-S, Fisher JG, Kang S-JL, et al. Grain growth control and solid-state crystal growth by Li2O/PbO addition and dislocation introduction in the PMN-35PT system. J Am Ceram Soc 2006, 89: 1237–1243.
Article
Google Scholar
Li J-F, Wang K, Zhang B-P, et al. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 2006, 89: 706–709.
Article
Google Scholar
Zhen Y, Li J-F. Abnormal grain growth and new core-shell structure in (K,Na)NbO3-based lead-free piezoelectric ceramics. J Am Ceram Soc 2007, 90: 3496–3502.
Article
Google Scholar
Ringgaard E, Wurlitzer T. Lead-free piezoceramics based on alkali niobates. J Eur Ceram Soc 2005, 25: 2701–2706.
Article
Google Scholar
Zhao P, Zhang B-P, Li J-F. High piezoelectric d33 coefficient in Li-modified lead-free (Na,K)NbO3 ceramics sintered at optimal temperature. Appl Phys Lett 2007, 90: 242909.
Article
Google Scholar
Guo SJ. Powder Sintering Theory. Beijing: Metallurgical Industry Press, 1998.
Google Scholar
Guo Y, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl Phys Lett 2004, 85: 4121–4123.
Article
Google Scholar
Hollenstein E, Davis M, Damjanovic D, et al. Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl Phys Lett 2005, 87: 182905.
Article
Google Scholar