Skip to main content

Microstructure and piezoelectric properties of K5.70Li4.07Nb10.23O30-added K0.5Na0.5NbO3 ceramics

Abstract

Lead-free piezoelectric ceramics K0.5Na0.5NbO3-xmol%K5.70Li4.07Nb10.23O30 (x = 0–2.5, KNN-xmol%KLN) were prepared by conventional sintering technique. The phase structure and electrical properties of KNN ceramics were investigated as a function of KLN concentration. The results showed that small amount of KLN introduced into the lattice formed a single phase perovskite structure. The KLN modification lowered the phase transition temperature of orthorhombic-tetragonal (TO-T) and increased the Curie temperature (TC). Some abnormal coarse grains were formed in a matrix when the content of KLN was relatively low (1 mol%). However, normally grown grains were only observed when the sintering aid content was increased to 2 mol%. Proper content of KLN decreased the amount of defects, thus the remanent polarization increased and the coercive field decreased markedly, and the sinterability of the KNN ceramics was simultaneously improved with significant increase of piezoelectric properties.

References

  1. Jaffe B, Roth RS, Marzullo S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J Appl Phys 1954, 25: 809–810.

    Article  Google Scholar 

  2. Park S-E, Shrout TR. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 1997, 82: 1804–1811.

    Article  Google Scholar 

  3. Fan H, Kim H-E. Effect of lead content on the structure and electrical properties of Pb((Zn1/3Nb2/3)0.5(Zr0.47Ti0.53)0.5)O3 ceramics. J Am Ceram Soc 2001, 84: 636–638.

    Article  Google Scholar 

  4. Egerton L, Dillom DM. Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc 1959, 42: 438–442.

    Article  Google Scholar 

  5. Zuo R, Fang X, Ye C. Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3-(Bi0.5Na0.5)TiO3 ceramics. Appl Phys Lett 2007, 90: 092904.

    Article  Google Scholar 

  6. Haertling GH. Properties of hot-pressed ferroelectric alkali niobate ceramics. J Am Ceram Soc 1967, 50: 329–330.

    Article  Google Scholar 

  7. Wang R, Xie R, Sekiya T, et al. Piezoelectric properties of spark-plasma-sintered (Na0.5K0.5)NbO3-PbTiO3 ceramics. Jpn J Appl Phys 2002, 41: 7119–7122.

    Article  Google Scholar 

  8. Matsubara M, Kikuta K, Hirano S. Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3-K5.4CuTa10O29 ceramics. J Appl Phys 2005, 97: 114105.

    Article  Google Scholar 

  9. Takao H, Saito Y, Aoki Y, et al. Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. J Am Ceram Soc 2006, 89: 1951–1956.

    Article  Google Scholar 

  10. Yang M-R, Hong C-S, Tsai C-C, et al. Effect of sintering temperature on the piezoelectric and ferroelectric characteristics of CuO doped 0.95(Na0.5K0.5)NbO3-0.05LiTaO3 ceramics. J Alloys Compd 2009, 488: 169–173.

    Article  Google Scholar 

  11. Park S-H, Ahn C-W, Nahm S, et al. Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn J Appl Phys 2004, 43: L1072–L1074.

    Article  Google Scholar 

  12. Kosec M, Kolar D. On activated sintering and electrical properties of NaKNbO3. Mater Res Bull 1975, 10: 335–339.

    Article  Google Scholar 

  13. Tashiro S, Nagamatsu H, Nagata K. Sinterability and piezoelectric properties of KNbO3 ceramics after substituting Pb and Na for K. Jpn J Appl Phys 2002, 41: 7113–7118.

    Article  Google Scholar 

  14. Guo Y, Kakimoto K, Ohsato H. Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-SrTiO3 ceramics. Solid State Commun 2004, 129: 279–284.

    Article  Google Scholar 

  15. Kakimoto K, Masuda I, Ohsato H. Ferroelectric and piezoelectric properties of KNbO3 ceramics containing small amounts of LaFeO3. Jpn J Appl Phys 2003, 42: 6102–6105.

    Article  Google Scholar 

  16. Choi SW, Shrout TR, Jang SJ, et al. Morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Mater Lett 1989, 8: 253–255.

    Article  Google Scholar 

  17. Kim M-S, Lee D-S, Park E-C, et al. Effect of Na2O additions on the sinterability and piezoelectric properties of lead-free 95(Na0.5K0.5)NbO3-5LiTaO3 ceramics. J Eur Ceram Soc 2007, 27: 4121–4124.

    Article  Google Scholar 

  18. Choi S-Y, Kang S-JL. Sintering kinetics by structural transition at grain boundaries in barium titanate. Acta Mater 2004, 52: 2937–2943.

    Article  Google Scholar 

  19. Kim M-S, Jeong S-J, Song J-S. Microstructures and piezoelectric properties in the Li2O-excess 0.95(Na0.5K0.5)NbO3-0.05LiTaO3 ceramics. J Am Ceram Soc 2007, 90: 3338–3340.

    Article  Google Scholar 

  20. Park CW, Yoon DY. Abnormal grain growth in alumina with anorthite liquid and the effect of MgO addition. J Am Ceram Soc 2002, 85: 1585–1593.

    Article  Google Scholar 

  21. Kim M-S, Fisher JG, Kang S-JL, et al. Grain growth control and solid-state crystal growth by Li2O/PbO addition and dislocation introduction in the PMN-35PT system. J Am Ceram Soc 2006, 89: 1237–1243.

    Article  Google Scholar 

  22. Li J-F, Wang K, Zhang B-P, et al. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 2006, 89: 706–709.

    Article  Google Scholar 

  23. Zhen Y, Li J-F. Abnormal grain growth and new core-shell structure in (K,Na)NbO3-based lead-free piezoelectric ceramics. J Am Ceram Soc 2007, 90: 3496–3502.

    Article  Google Scholar 

  24. Ringgaard E, Wurlitzer T. Lead-free piezoceramics based on alkali niobates. J Eur Ceram Soc 2005, 25: 2701–2706.

    Article  Google Scholar 

  25. Zhao P, Zhang B-P, Li J-F. High piezoelectric d33 coefficient in Li-modified lead-free (Na,K)NbO3 ceramics sintered at optimal temperature. Appl Phys Lett 2007, 90: 242909.

    Article  Google Scholar 

  26. Guo SJ. Powder Sintering Theory. Beijing: Metallurgical Industry Press, 1998.

    Google Scholar 

  27. Guo Y, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl Phys Lett 2004, 85: 4121–4123.

    Article  Google Scholar 

  28. Hollenstein E, Davis M, Damjanovic D, et al. Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl Phys Lett 2005, 87: 182905.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinhao Qiu.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pang, X., Qiu, J. & Zhu, K. Microstructure and piezoelectric properties of K5.70Li4.07Nb10.23O30-added K0.5Na0.5NbO3 ceramics. J Adv Ceram 3, 147–154 (2014). https://doi.org/10.1007/s40145-014-0105-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40145-014-0105-1

Keywords

  • ceramics
  • sintering aid
  • phase transformation
  • electrical properties