Ohno H, Konishi S, Nagasaki T, et al. Correlation behavior of lithium and tritium in some solid breeder materials. J Nucl Mater 1985, 133–134: 181–185.
Article
Google Scholar
Roux N, Tanaka S, Johnson C, et al. Ceramic breeder material development. J Nucl Mater 1998, 41: 31–38.
Google Scholar
Roux N, Avon J, Floreancing A, et al. Low-temperature tritium releasing ceramics as potential materials for the ITER breeding blanket. J Nucl Mater 1996, 233–237: 1431–1435.
Article
Google Scholar
Hofmann P, Dienst W. Compatibility studies of metallic materials with lithium-based oxides. J Nucl Mater 1988, 155–157: 485–490.
Article
Google Scholar
Rasneur B, Charpin J. Chemical properties of lithium ceramics: Reactivity with water and water vapour. J Nucl Mater 1988, 155–157: 461–465.
Article
Google Scholar
Vittal Rao TV, Bamankar YR, Mukerjee SK, et al. Preparation and characterization of Li2TiO3 pebbles by internal gelation sol-gel process. J Nucl Mater 2012, 426: 102–108.
Article
Google Scholar
Wu X, Wen Z, Han J, et al. Fabrication of Li2TiO3 pebbles by water based sol-gel method. Fusion Eng Des 2008, 83: 112–116.
Article
Google Scholar
Wu X, Wen Z, Lin B, et al. Sol-gel synthesis and sintering of nano-size Li2TiO3 powder. Mater Lett 2008, 62: 837–839.
Article
Google Scholar
Deptuła A, Łada W, Olczak T, et al. Preparation of lithium titanate by sol-gel method. Nukleonika 2001, 46: 95–100.
Google Scholar
Deptuła A, Brykała M, Łada W, et al. Preparation of spherical particles of Li2TiO3 (with diameters below 100 μm) by sol-gel process. Fusion Eng Des 2009, 84: 681–684.
Article
Google Scholar
Lulewicz D, Roux N. Fabrication of Li2TiO3 pebbles by the extrusion-spheronisation-sintering process. J Nucl Mater 2002, 307–311: 803–806.
Article
Google Scholar
Mandal D, Sathiyamoorthy D, Govardhana Rao V. Preparation and characterization of lithium-titanate pebbles by solid-state reaction extrusion spheronization techniques for fusion reactor. Fusion Eng Des 2012, 87: 7–12.
Article
Google Scholar
Tsuchiya K, Kawamura H, Takayama T, et al. Control of particle size and density of Li2TiO3 pebbles fabricated by indirect wet process. J Nucl Mater 2005, 345: 239–244.
Article
Google Scholar
Jung C-H. Sintering characterization of Li2TiO3 ceramic breeder powders prepared by the solution combustion synthesis process. J Nucl Mater 2005, 341: 148–152.
Article
Google Scholar
Jung C-H, Lee SJ, Waltraud M, et al. A polymer solution technique for the synthesis of nano-sized Li2TiO3 ceramic breeder powders. J Nucl Mater 2008, 373: 194–198.
Article
Google Scholar
Sinclair DC, West AR. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys 1989, 66: 3850.
Article
Google Scholar
Lanfredi S, Rodrigues ACM. Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3. J Appl Phys 1999, 86: 2215.
Article
Google Scholar
Barsoukov E, Macdonald JR. Impedance Spectroscopy, 2nd edn. Hoboken, NJ: John Wiley & Sons, 2005.
Book
Google Scholar
Barranco AP, Piñar FC, Martínez OP, et al. AC behaviour and conductive mechanisms of 2.5 mol% La2O3 doped PbZr0.53Ti0.47O3 ferroelectric ceramics. J Eur Ceram Soc 1999, 19: 2677–2683.
Article
Google Scholar
Bharadwaj SSN, Victor P, Venkateswarulu P, et al. AC transport studies of La-modified antiferroelectric lead zirconate thin films. Phys Rev B 2002, 65: 174106.
Article
Google Scholar
Cao W, Gerhardt R. Calculation of various relaxation times and conductivity for a single dielectric relaxation process. Solid State Ionics 1990, 42: 213–221.
Article
Google Scholar
Gerhardt R. Impedance and dielectric spectroscopy revisited: Distinguishing localized relaxation from long-range conductivity. J Phys Chem Solids 1994, 55: 1491–1506.
Article
Google Scholar
Argall F, Jonscher AK. Dielectric properties of thin films of aluminium oxide and silicon oxide. Thin Solid Films 1968, 2: 185–210.
Article
Google Scholar
Fehr Th, Schmidbauer E. Electrical conductivity of Li2TiO3 ceramics. Solid State Ionics 2007, 178: 35–41.
Article
Google Scholar
León C, Rivera A, Várez A, et al. Origin of constant loss in ionic conductors. Phys Rev Lett 2001, 86: 1279–1282.
Article
Google Scholar