Skip to main content

Processing and characterization of polymer precursor derived silicon oxycarbide ceramic foams and compacts

Abstract

This work focused on the fabrication of silicon oxycarbide ceramic (SiOC) foams as well as dense compacts using poly(hydridomethylsiloxane) (PHMS) as a polymer precursor. The room-temperature cross-linking of PHMS was achieved by the addition of 1,4-diazabicyclo [2.2.2] octane (DABCO) with the release of hydrogen gas as a by-product. This resulted in self-blowing of the polymer precursor at room temperature and thereby offered the possibility of producing SiOC foams without the need of any external blowing agents. We also reported the fabrication of crack-free silicon oxycarbide compacts by cold compaction and pyrolysis route using polyvinyl alcohol (PVA) as a processing additive. Cylindrical-shaped pellets were pyrolysed at 1300 °C in argon atmosphere with a ceramic yield of approximately 85%. Increased resistance to phase separation and crystallization up to 1400 °C was attributed to the presence of large volume fraction of free carbon in the material which was confirmed by Raman spectroscopy.

References

  1. Zhang H, Pantano CG. Synthesis and characterization of silicon oxycarbide glasses. J Am Ceram Soc 1990, 73: 958–963.

    Article  Google Scholar 

  2. Renlund GM, Prochazka S, Doremus RH. Silicon oxycarbide glasses: Part II. Structure and properties. J Mater Res 1991, 6: 2723–2734.

    Article  Google Scholar 

  3. Bois L, Maquet J, Babonneau F, et al. Structural characterization of sol-gel derived oxycarbide glasses. 1. Study of the pyrolysis process. Chem Mater 1994, 6: 796–802.

    Article  Google Scholar 

  4. Corriu RJP, Leclercq D, Mutin PH, et al. 29Si nuclear magnetic resonance study of the structure of silicon oxycarbide glasses derived from organosilicon precursors. J Mater Sci 1995, 30: 2313–2318.

    Article  Google Scholar 

  5. Mutin PH. Control of the composition and structure of silicon oxycarbide and oxynitride glasses derived from polysiloxane precursors. J Sol-Gel Sci Technol 1999, 14: 27–38.

    Article  Google Scholar 

  6. Kleebe HJ, Turquat C, Sorarù GD. Phase separation in an SiCO glass studied by transmission electron microscopy and electron energy-loss spectroscopy. J Am Ceram Soc 2001, 84: 1073–1080.

    Article  Google Scholar 

  7. Harshe R, Balan C, Riedel R. Amorphous Si(Al)OC ceramic from polysiloxanes: Bulk ceramic processing, crystallization and applications. J Eur Ceram Soc 2004, 24: 3471–3482.

    Article  Google Scholar 

  8. Colombo P, Mera G, Riedel R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 2010, 93: 1805–1837.

    Google Scholar 

  9. Radovanovic E, Gozzi MF, Gonçalves MC, et al. Silicon oxycarbide glasses from silicone networks. J Non-Cryst Solids 1999, 248: 37–48.

    Article  Google Scholar 

  10. Modena S, Sorarù GD, Blum Y, et al. Passive oxidation of an effluent system: The case of polymer-derived SiCO. J Am Ceram Soc 2005, 88: 339–345.

    Article  Google Scholar 

  11. Liu X, Li YL, Hou F. Fabrication of SiOC ceramic microparts and patterned structures from polysiloxanes via liquid cast and pyrolysis. J Am Ceram Soc 2009, 92: 49–53.

    Article  Google Scholar 

  12. Su D, Li YL, An HJ, et al. Pyrolytic transformation of liquid precursors to shaped bulk ceramics. J Eur Ceram Soc 2010, 30: 1503–1511.

    Article  Google Scholar 

  13. Jiang T, Hill A, Fei W, et al. Making bulk ceramics from polymeric precursors. J Am Ceram Soc 2010, 93: 3017–3019.

    Article  Google Scholar 

  14. Greil P. Active-filler-controlled pyrolysis of preceramic polymers. J Am Ceram Soc 1995, 78: 835–848.

    Article  Google Scholar 

  15. Blum YD, MacQueen DB, Kleebe H-J. Synthesis and characterization of carbon-enriched silicon oxycarbides. J Eur Ceram Soc 2005, 25: 143–149.

    Article  Google Scholar 

  16. Lavedrine A, Bahloul D, Goursat P, et al. Pyrolysis of polyvinylsilazane precursors to silicon carbonitride. J Eur Ceram Soc 1991, 8: 221–227.

    Article  Google Scholar 

  17. Yvie NSCK, Corriu RJP, Leclerq D, et al. Silicon carbonitride from polymeric precursors: Thermal cross-linking and pyrolysis of oligosilazane model compounds. Chem Mater 1992, 4: 141–146.

    Article  Google Scholar 

  18. Wen G, Bai H, Huang X, et al. Lotus-type porous SiOCN ceramic fabricated by undirectional solidification and pyrolysis. J Am Ceram Soc 2011, 94: 1309–1313.

    Article  Google Scholar 

  19. Kroke E, Li Y-L, Konetschny C, et al. Silazane derived ceramics and related materials. Mat Sci Eng R 2000, 26: 97–199.

    Article  Google Scholar 

  20. Blum YD, Schwartz KB, Laine RM. Preceramic polymer pyrolysis. J Mater Sci 1989, 24: 1707–1718.

    Article  Google Scholar 

  21. Walter S, Soraru GD, Bréquel H, et al. Microstructural and mechanical characterization of sol-gel-derived Si-O-C glasses. J Eur Ceram Soc 2002, 22: 2389–2400.

    Article  Google Scholar 

  22. Wang Y, Alsmeyer DC, McCreery RL. Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem Mater 1990, 2: 557–563.

    Article  Google Scholar 

  23. Schiavon MA, Gervais C, Babonneau F, et al. Crystallization behavior of novel silicon boron oxycarbide glasses. J Am Ceram Soc 2004, 87: 203–208.

    Article  Google Scholar 

  24. Rouxel T, Soraru G-D, Vicens J. Creep viscosity and stress relaxation of gel-derived silicon oxycarbide glasses. J Am Ceram Soc 2001, 84: 1052–1058.

    Article  Google Scholar 

  25. Gambaryan-Roisman T, Scheffler M, Buhler P, et al. Processing of ceramic foam by pyrolysis of filler containing phenylmethyl polysiloxane precursor. Ceram Trans 2000, 108: 121–130.

    Google Scholar 

  26. Zeschky J, Goetz-Neunhoeffer F, Neubauer J, et al. Preceramic polymer derived cellular ceramics. Compos Sci Technol 2003, 63: 2361–2370.

    Article  Google Scholar 

  27. Zeschky J, Höfner T, Arnold C, et al. Polysilsesquioxane derived ceramic foams with gradient porosity. Acta Mater 2005, 53: 927–937.

    Article  Google Scholar 

  28. Zeschky J, Lo J, Höfner T, et al. Mg alloy infiltrated Si-O-C ceramic foams. Mat Sci Eng A 2005, 403: 215–221.

    Article  Google Scholar 

  29. Mazo MA, Palencia C, Nistal A, et al. Dense bulk silicon oxycarbide glasses obtained by spark plasma sintering. J Eur Ceram Soc 2012, 32: 3369–3378.

    Article  Google Scholar 

  30. Sujith R, Srinivasan N, Kumar R. Small-scale deformation of pulsed electric current sintered silicon oxycarbide polymer derived ceramics. Adv Eng Mater 2013, DOI: 10.1002/adem.201300146.

    Google Scholar 

  31. Konetschny C, Galusek D, Reschke S, et al. Dense silicon carbonitride ceramics by pyrolysis of cross-linked and warm pressed polysilazane powders. J Eur Ceram Soc 1999, 19: 2789–2796.

    Article  Google Scholar 

  32. Weisbarth R, Jansen M. SiBN3C ceramic workpieces by pressureless pyrolysis without sintering aids: Preparation, characterization and electrical properties. J Mater Chem 2003, 13: 2975–2978.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kumar.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Nedunchezhian, S., Sujith, R. & Kumar, R. Processing and characterization of polymer precursor derived silicon oxycarbide ceramic foams and compacts. J Adv Ceram 2, 318–324 (2013). https://doi.org/10.1007/s40145-013-0078-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40145-013-0078-5

Keywords

  • silicon oxycarbide
  • foams
  • 1,4-diazabicyclo [2.2.2] octane (DABCO)
  • self-blown polymer
  • poly(hydridomethylsiloxane) (PHMS)