Skip to main content
Log in

Preceramic polymer pyrolysis

Part 1 Pyrolytic properties of polysilazanes

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The physicochemical behaviour of characterized polysilazanes has been examined during their pyrolytic transformation into amorphous silicon-based ceramics. Selected polysilazanes bearing different substituents at silicon and nitrogen were synthesized by ruthenium catalysed dehydrocoupling of Si-H bonds with N-H bonds. The relationships between the structure and chemical content of polymers and their pyrolysed ceramic compositions and yields are discussed. Possible reactions occurring during pyrolysis are described in terms of a set of mechanisms based on known behaviour of silazane monomers. The decomposition product patterns at different temperature levels and the compositions of the final ceramics suggest specific kinetically or thermodynamically controlled thermolysis pathways. Additional chemical reactivity has been observed when the amorphous ceramic products at 800° C are heated and crystallized at 1600° C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Brinker, E. D. Clark andD. R. Ulrich (eds), “Better Ceramics Through Chemistry I”, Materials Research Society Symposium Proceedings, Vol. 32 (North-Holland, New York, 1984).

    Google Scholar 

  2. Idem, “Better Ceramics Through Chemistry II”, Materials Research Society Symposium Proceedings, Vol. 73 (Material Research Society, Pittsburgh, 1986).

    Google Scholar 

  3. L. L. Hench andD. R. Ulrich (eds), “Ultrastructure Processing of Ceramics, Glasses and Composites” (Wiley, New York, 1984).

    Google Scholar 

  4. R. M. Laine, Y. D. Blum, D. Tse andR. Glaser, in “International Symposium on Inorganic and Organometallic Polymers”, edited by M. Zeldin, K. J. Wynne and H. R. Allcock, ACS Symposium Series 360 (American Chemical Society, Washington, 1987) p. 125.

    Google Scholar 

  5. Y. D. Blum andR. M. Laine,Organomet. 5 (1986) 2081.

    Google Scholar 

  6. R. M. Laine andY. D. Blum, US Pat. 4612383 (September 1986).

  7. R. M. Laine, Y. D. Blum, R. D. Hamlin andA. Chow, in “Ultrastructure Processing of Advanced Ceramics”, edited by D. D. Mackenzie and D. R. Ulrich (Wiley, New York, 1987) p. 761.

    Google Scholar 

  8. Y. D. Blum, R. M. Laine, K. B. Schwartz, R. M. Platz, D. J. Rowcliffe, A. L. Dodge, J. M. McLeod andD. L. Roberts, International Patent Application PCT/US86/02266 (October 1986).

  9. Y. D. Blum, R. M. Laine, K. B. Schwartz, D. J. Rowcliffe, R. C. Bening andD. C. Cotts, in “Better Ceramics Through Chemistry II”, Materials Research Society Symposium Proceedings, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich (Materials Research Society, Pittsburgh, 1986) p. 389.

    Google Scholar 

  10. K. B. Schwartz, D. J. Rowcliffe, Y. D. Blum andR. M. Laine,ibid.in “, p. 407.

    Google Scholar 

  11. P. G. Chantrell andE. P. Popper, in “Special Ceramics — 4”, edited by E. P. Popper (Academic, New York, 1964) p. 87.

    Google Scholar 

  12. S. Yajima, T. Shishido andH. Kayano,Nature 264 (1976) 237.

    Google Scholar 

  13. K. Niihara, T. Yamamoto, K. Suganuma, T. Takemoto, T. Nishikawa andM. Okumura, in “Ultrastructure Processing of Ceramics”, edited by D. D. Mackenzie and D. R. Ulrich (Wiley, New York, 1987) p. 891.

    Google Scholar 

  14. K. J. Wynne andR. W. Rice,Ann. Rev. Mater. Sci. 14 (1984) 297.

    Google Scholar 

  15. W. Verbeek, US Pat. 3 853 567 (December 1974).

  16. G. Winter, W. Berbeek andM. Mansmann, US Pat. 3 892 583 (July 1975).

  17. D. Seyferth andG. H. Wiseman, US Pat. 4 482 669 (November 1984).

  18. Idem, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1984) p. 265.

    Google Scholar 

  19. J. H. Gaul Jr, US Pat. 4 340 619 (July 1982).

  20. R. H. Baney andJ. H. Gaul Jr, US Pat. 4 310 651 (January 1982).

  21. J. H. Gaul Jr, US Pat. 4 395 460 (July 1983).

  22. Idem, US Pat. 4 312 970 (January 1982).

  23. G. E. Legrow, T. F. Lim, J. Lipowitz andR. S. Reaoch, in “Better Ceramics Through Chemistry II”, Materials Research Society Symposium Proceedings, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich, Vol. 73 (Materials Research Society, Pittsburgh, 1986) p. 533.

    Google Scholar 

  24. J. P. Cannady, US Pat. 4 535 007 (August 1985).

  25. Idem, US Pat. 4 543 344 (September 1985).

  26. P. Flory, “Principles of Polymer Chemistry” (Cornell University Press, New York, 1962).

    Google Scholar 

  27. D. Seyferth, G. H. Wiseman andC. Prud'homme,J. Amer. Ceram. Soc. 66 (1983) C-13.

    Google Scholar 

  28. D. Seyferth andG. H. Wiseman,Amer. Chem. Soc. Polym. Div. Polym. Preprint 25 (1984) 10.

    Google Scholar 

  29. M. Arai, S. Sakurada, T. Isoda andT. Tomizawa,ibid. 27 (1987) 407.

    Google Scholar 

  30. R. R. Willis, R. A. Mark andS. A. Mukherjee,Am. Ceram. Soc. Bull. 62 (1983) 904.

    Google Scholar 

  31. B. J. Aylett,Organomet. Chem. Rev. 3 (1968) 151.

    Google Scholar 

  32. B. J. Aylett, G. M. Burnett, L. K. Peterson andN. Ross,Soc. Chem. Ind. (London) Monograph 13 (1961) 5.

    Google Scholar 

  33. A. Stock andK. Somieski,Ber. Dtsch. Chem. Ges. 54 (1921) 740.

    Google Scholar 

  34. M. Arai andT. Isoda,Jpn Kokai Tokkyo Koho JP61 89 230 (1986).

  35. B. Arkles,J. Electrochem. Soc. 133 (1986) 233.

    Google Scholar 

  36. A. A. Zhdanov, G. V. Kotrelev, V. V. Kazakova andYe. P. Redkozubova,Polym. Sci. USSR 27 (1985) 1593.

    Google Scholar 

  37. K. A. Andrianov, B. A. Ismailov, A. M. Konov andG. V. Kotrelev,J. Organomet. Chem. 3 (1965) 129.

    Google Scholar 

  38. K. A. Andrianov, G. V. Kotrelev, B. A. Kamaritski, I. H. Unitski andN. I. Sidorova,ibid. 16 (1969) 51.

    Google Scholar 

  39. E. G. Rochow,Mon. Chem. 95 (1964) 750.

    Google Scholar 

  40. C. R. Kruger andE. G. Rochow,J. Polym. Sci. A 2 (1964) 3179.

    Google Scholar 

  41. G. Redl andE. G. Rochow,Angew. Chem. B76 (1964) 650.

    Google Scholar 

  42. B. G. Penn, J. G. Daniels, F. E. Ledbetter III andJ. M. Clemons,Polym. Engng Sci. 26 (1986) 1191.

    Google Scholar 

  43. B. G. Penn, F. E. Ledbetter Iii, J. M. Clemons andJ. G. Daniels,J. Appl. Polym. Sci. 27 (1982) 3751.

    Google Scholar 

  44. B. G. Penn, F. E. Ledbetter Iii andJ. M. Clemons,Ind. Engng Chem. Process. Des. Dev. 23 (1984) 217.

    Google Scholar 

  45. A. W. Chow, R. D. Hamlin, Y. D. Blum andR. M. Laine,J. Polym. Sci., Part C:Polym. Lett. 26 (1988) 103.

    Google Scholar 

  46. K. B. Schwartz andY. D. Blum, in preparation.

  47. K. B. Schwartz, D. J. Rowcliffe andY. D. Blum,Adv. Ceram. Mater. 3 (1988) 320.

    Google Scholar 

  48. S. J. Lenhart, Y. D. Blum andR. M. Laine,Corrosion, in press.

  49. Y. D. Blum, R. D. Hamlin, A. W. Chow andR. M. Laine, unpublished results.

  50. B. J. Wood, R. D. Brittain andK. H. Lau,Carbon 23 (1985) 73.

    Google Scholar 

  51. H. D. Beckey, “Field Ionization Mass Spectrometry” (Pergamon, Elmsford, New York, 1971).

    Google Scholar 

  52. V. Bazant, V. Chvalovsky andJ. Rathousky, “Organosilicon Compounds” (Academic, New York and London, 1965) p. 82.

    Google Scholar 

  53. B. J. Aylett andM. J. Hakim,J. Chem. Soc. A (1969) 1788.

  54. A. U. Klingebiel, D. Bentmann andA. Meller,J. Organomet. Chem. 144 (1978) 381.

    Google Scholar 

  55. D. R. Parker andL. H. Sommer,ibid. 110 (1976) C1.

    Google Scholar 

  56. M. Mori, H. Inoue andT. Ochiai, in “Progress in Nitrogen Ceramics”, Vol. 65, edited by F. L. Riley (Nato ASI Series, 1983) p. 149.

  57. D. L. Trimm, in “Pyrolysis Theory and Industrial Practice”, edited by L. F. Albright, B. L. Crynes and W. H. Corcoran (Academic, New York, 1983) p. 203.

    Google Scholar 

  58. P. S. Virk, A. Korosi andH. N. Woebcke, in “Thermal Hydrocarbon Chemistry”, Advances in Chemistry Series 183, edited by A. G. Oblad, H. G. Davis and R. T. Eddinger (American Chemical Society, Washington D.C., 1979) p. 67.

    Google Scholar 

  59. R. Walsh,Acc. Chem. Res. 14 (1981) 246.

    Google Scholar 

  60. Y. Hasegawa andK. Okamura,J. Mater. Sci. 18 (1983) 3633.

    Google Scholar 

  61. S. Yajima, Y. Hasegawa, J. Hayashi andM. Iimura,ibid. 13 (1978) 2569.

    Google Scholar 

  62. J. K. Kochi, “Organometallic Mechanisms and Catalysis” (Academic, New York, 1978) pp. 246–58.

    Google Scholar 

  63. D. Seyferth andY. F. Yu, European Pat. Application 86 305 444.1 (July 1986).

  64. Y. Nakaido, Y. Otani, N. Kozakai andS. Otani,Chem. Lett. (1987) 705.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, Y.D., Schwartz, K.B. & Laine, R.M. Preceramic polymer pyrolysis. J Mater Sci 24, 1707–1718 (1989). https://doi.org/10.1007/BF01105695

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01105695

Keywords

Navigation