Advertisement

Journal of Advanced Ceramics

, Volume 1, Issue 4, pp 290–295 | Cite as

Theoretical work on magnetocaloric effect in La0.75Ca0.25MnO3

  • Mahmoud Aly HamadEmail author
Open Access
Research Article

Abstract

In this work, a phenomenological model is applied to describe the magnetocaloric effect for the La0.75Ca0.25MnO3 system near a second-order phase transition from a ferromagnetic to a paramagnetic state. Based on this model, it can predict the values of the magnetocaloric properties from calculation of magnetization as a function of temperature under different external magnetic fields. The magnetic entropy change reaches a peak of about 5.39 J/(kg·K) at 257 K upon 4 T applied field variation. The ΔSM distribution is much more uniform than that of gadolinium, which is desirable for an Ericson-cycle magnetic refrigerator.

Key words

magnetocaloric effect model magnetic entropy change heat capacity change relative cooling power 

References

  1. [1]
    de Oliveira A, von Ranke PJ. Theoretical aspects of themagnetocaloric effect. Phys Reports 2010, 489: 89.CrossRefGoogle Scholar
  2. [2]
    Gschneidner KA, Pecharsky VK, Tsoko AO. Recent developments in magnetocaloric materials. Rep Prog Phys 2005, 68: 1479.CrossRefGoogle Scholar
  3. [3]
    Hamad MA. Detecting giant electrocaloric effect in SrxBa1−xNb2O6 single crystals. Appl Phys Let 2012, 100: 192908.CrossRefGoogle Scholar
  4. [4]
    Hamad MA. Magnetocaloric effect in polycrystalline Gd1−xCaxBaCo2O5.5. Mater Lett 2012, 82: 181–183.CrossRefGoogle Scholar
  5. [5]
    Hamad MA. Investigations on electrocaloric properties of [111] oriented 0.955PbZn1/3Nb2/3O3-0.045PbTiO3 single crystals. Phase Transition 2012, DOI: 10.1080/01411594.2012.674527.Google Scholar
  6. [6]
    Hamad MA. Magnetocaloric effect in Ge0.95Mn0.05 films. J Supercond Nov Magn 2012, DOI: 10.1007/s10948-012-1762-3.Google Scholar
  7. [7]
    Hamad MA. Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 thin film. J Comput Electron 2012, 11: 344–348CrossRefGoogle Scholar
  8. [8]
    Hamad MA. Calculation of electrocaloric properties of ferroelectric SrBi2Ta2O9. Phase Transition 2012, 85: 159–168.CrossRefGoogle Scholar
  9. [9]
    Hamad MA. Theoretical work on magnetocaloric effect in ceramic and sol-gel La0.67Ca0.33MnO3. J Therm Anal Calorim 2012, DOI: 10.1007/s10973-012-2505-1.Google Scholar
  10. [10]
    Debnath JC, Zeng R, Kim JH, et al. Improvement of refrigerant capacity of La0.7Ca0.3MnO3 material with a few percent Co doping. J Magn Magn Mater 2011, 323: 138–143.CrossRefGoogle Scholar
  11. [11]
    Hamad MA. Magnetocaloric properties of La0.6Ca0.4MnO3. J Therm Anal Calorim 2012, DOI: 10.1007/s10973-012-2723-6.Google Scholar
  12. [12]
    Baldini M, Capogna L, Capone M, et al. Pressure induced magnetic phase separation in La0.75Ca0.25MnO3 manganite. J Phys: Condens Matter 2012, 24: 045601.Google Scholar
  13. [13]
    Schiffer P, Ramirez AP, Bao W, et al. Low temperature magnetoresistance and the magnetic phase diagram of La1−xCaxMnO3. Phys Rev Lett 1995, 75: 3336–3339.CrossRefGoogle Scholar
  14. [14]
    Hamad MA. Prediction of energy loss of Ni0.58Zn0.42Fe2O4 nanocrystalline and Fe3O4 nanowire arrays. Jpn J Appl Phys 2010, 49: 085004.CrossRefGoogle Scholar
  15. [15]
    Hamad MA. Calculations on nanocrystalline CoFe2O4 prepared by polymeric precursor method. J Supercond Nov Magn 2012, DOI: 10.1007/s10948-012-1783-y.Google Scholar
  16. [16]
    Hamad MA. Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Transitions 2012, 85: 106–112.CrossRefGoogle Scholar
  17. [17]
    Phan MH, SC Yu. Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater 2007, 308: 325.CrossRefGoogle Scholar
  18. [18]
    Földeaki M, Chahine R, Bose TK. Magnetic measurements: A powerful tool in magnetic refrigerator design. J Appl Phys 1995, 77: 3528–3537.CrossRefGoogle Scholar
  19. [19]
    Terashita H, Garbe JJ, Neumeier JJ. Compositional dependence of the magnetocaloric effect in La1−xCaxMnO3 (0 ≤ x ≤ 0.52). Phys Rev B 2004, 70:094403.CrossRefGoogle Scholar
  20. [20]
    Williams DV. Characterization of the structural and magnetic properties of Gd thin films. Ph.D. Thesis. Florida (USA): University of South Florida, 2010.Google Scholar
  21. [21]
    Goodenough JB. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys Rev 1955, 100: 564.CrossRefGoogle Scholar
  22. [22]
    Dan’kov SY, Tishin AM, Pecharsky VK, et al. Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys Rev B 1998, 57: 3478–3490.CrossRefGoogle Scholar
  23. [23]
    Pecharsky VK, Gschneidner KA. Magnetocaloric effect and magnetic refrigeration. J Magn Magn Mater 1999, 200: 44–56.CrossRefGoogle Scholar
  24. [24]
    Bohigas X, Tejada J, del Barco E, et al. Tunable magnetocaloric effect in ceramic perovskites. Appl Phys Lett 1998, 73: 390.CrossRefGoogle Scholar
  25. [25]
    Guo ZB, Du YW, Zhu JS, et al. Large magnetic entropy change in perovskite-type manganese oxides. Appl Phys Lett 1997, 78: 1142–1145.CrossRefGoogle Scholar
  26. [26]
    Radaelli PG, Cox DE, Marezio M, et al. Simultaneous structural, magnetic, and electronic transitions in La1−xCaxMnO3 with x=0.25 and 0.50. Phys Rev Lett 1995, 75: 4488–4491.CrossRefGoogle Scholar
  27. [27]
    Kim KH, Gu JY, Choi HS, et al. Frequency shifts of the internal phonon modes in La0.7Ca0.3MnO3. Phys Rev Lett 1996, 77: 1877–1880.CrossRefGoogle Scholar
  28. [28]
    Tang T, Gu KM, Cao QQ, et al. Magnetocaloric properties of Ag-substituted perovskite-type manganites. J Magn Magn Mater 2000, 222: 110–114.CrossRefGoogle Scholar
  29. [29]
    Phan MH, Tian SB, Yu SC, et al. Magnetic and magnetocaloric properties of La0.7Ca0.3−xBaxMnO3 compounds. J Magn Magn Mater 2003, 256: 306–310.CrossRefGoogle Scholar
  30. [30]
    Sun Y, Tong W, Zhang YH. Large magnetic entropy change above 300 K in La0.67Sr0.33Mn0.9Cr0.1O3. J Magn Magn Mater 2001, 232: 205–208.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Physics Department, College of ScienceAl-Jouf UniversityAl-Jouf, SkakaSaudi Arabia

Personalised recommendations