Skip to main content

Advertisement

Log in

Physiology of Neuromuscular Transmission and Applied Pharmacology of Muscle Relaxants

  • Neuromuscular Blockade (CA Lien, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this clinical review is to summarize the physiology of the neuromuscular junction (NMJ) in the normal and denervated state, discuss the pharmacology of the neuromuscular relaxants (NMRs) within and outside the NMJ, and review recent advances in the development of new NMRs and their reversal agents.

Recent Findings

Recent studies have delineated the mechanisms of the non-NMJ, anti-inflammatory effects of non-depolarizing NMRs, mediated by the α7 acetylcholine receptors expressed in innate immune cells (e.g., macrophages). Several chlorofumarate molecules (including gantacurium) have been developed as experimental NMRs, with specific reversal by l-cysteine. Additionally, reversal of existing NMRs (both aminosteroids and benzylisoquinolones) by calabadion 1 and 2 is under investigation.

Summary

New NMRs and reversal agents hold promise for the use in anesthesiology and critical care, with improved pharmacokinetic parameters and more favorable side-effect profiles compared with existing agents. Further research is warranted to exploit the systemic anti-inflammatory properties exhibited by NMRs for other disease processes aside from acute respiratory distress syndrome (ARDS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No data sets were directly used in the present manuscript. The content of the manuscript is derived from the publications therein.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Martyn JA, Fagerlund MJ, Eriksson LI. Basic principles of neuromuscular transmission. Anaesthesia. 2009;64(Suppl 1):1–9.

    Article  CAS  PubMed  Google Scholar 

  2. Martyn JA. Basic and clinical pharmacology of the acetylcholine receptor: implications for the use of neuromuscular relaxants. Keio J Med. 1995;44(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  3. Lee S, et al. Immobilization with atrophy induces de novo expression of neuronal nicotinic α7 acetylcholine receptors in muscle contributing to neurotransmission. Anesthesiology. 2014;120(1):76–85.

    Article  CAS  PubMed  Google Scholar 

  4. •• Martyn JAJ, Sparling JL, Bittner EA. Molecular mechanisms of muscular and non-muscular actions of neuromuscular blocking agents in critical illness: a narrative review. Br J Anaesth. 2023;130(1):39–50. An up-to-date review of NMR use in the critically ill population, with a focus on actions outside the neuromuscular junction.

    Article  CAS  PubMed  Google Scholar 

  5. Wong SF, Chung F. Succinylcholine-associated postoperative myalgia. Anaesthesia. 2000;55(2):144–52.

    Article  CAS  PubMed  Google Scholar 

  6. Gainnier M, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2004;32(1):113–9.

    Article  CAS  PubMed  Google Scholar 

  7. Moss M, et al. Early Neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med. 2019;380(21):1997–2008.

    Article  PubMed  Google Scholar 

  8. •• Courcelle R, et al. Neuromuscular blocking agents (NMBA) for COVID-19 acute respiratory distress syndrome: a multicenter observational study. Crit Care. 2020;24(1):446. An early report on the widespread use of NMRs in patients with COVID-19 ARDS.

    Article  PubMed  PubMed Central  Google Scholar 

  9. • Chaves-Cardona H, et al. Neuromuscular blockade management in patients with COVID-19. Korean J Anesthesiol. 2021;74(4):285–92. A narrative review on the use of NMRs in patients with COVID-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. • Chesnut R, Aguilera S, Buki A, Bulger E, Citerio G, Cooper DJ, Arrastia RD, Diringer M, Figaji A, Gao G, Geocadin R, Ghajar J, Harris O, Hoffer A, Hutchinson P, Joseph M, Kitagawa R, Manley G, Mayer S, Menon DK, Meyfroidt G, Michael DB, Oddo M, Okonkwo D, Patel M, Robertson C, Rosenfeld JV, Rubiano AM, Sahuquillo J, Servadei F, Shutter L, Stein D, Stocchetti N, Taccone FS, Timmons S, Tsai E, Ullman JS, Vespa P, Videtta W, Wright DW, Zammit C, Hawryluk GWJ. A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2020;46(5):919–29. https://doi.org/10.1007/s00134-019-05900-xUpdated consensus guidelines on treatment of TBI, including the consideration of NMR for refractory elevated intracerebral pressure (ICP).

  11. Vernon DD, Witte MK. Effect of neuromuscular blockade on oxygen consumption and energy expenditure in sedated, mechanically ventilated children. Crit Care Med. 2000;28(5):1569–71.

    Article  CAS  PubMed  Google Scholar 

  12. Picetti E, et al. VENTILatOry strategies in patients with severe traumatic brain injury: the VENTILO Survey of the European Society of Intensive Care Medicine (ESICM). Crit Care. 2020;24(1):158.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Murray MJ, et al. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient. Crit Care Med. 2016;44(11):2079–103.

    Article  CAS  PubMed  Google Scholar 

  14. Adnet F, et al. Complication profiles of adult asthmatics requiring paralysis during mechanical ventilation. Intensive Care Med. 2001;27(11):1729–36.

    Article  CAS  PubMed  Google Scholar 

  15. Behbehani NA, et al. Myopathy following mechanical ventilation for acute severe asthma: the role of muscle relaxants and corticosteroids. Chest. 1999;115(6):1627–31.

    Article  CAS  PubMed  Google Scholar 

  16. Kesler SM, et al. Severe weakness complicating status asthmaticus despite minimal duration of neuromuscular paralysis. Intensive Care Med. 2009;35(1):157–60.

    Article  PubMed  Google Scholar 

  17. Kirkpatrick AW, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7):1190–206.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Macalino JU, Goldman RK, Mayberry JC. Medical management of abdominal compartment syndrome: case report and a caution. Asian J Surg. 2002;25(3):244–6.

    Article  PubMed  Google Scholar 

  19. Chiles KT, Feeney CM. Abdominal compartment syndrome successfully treated with neuromuscular blockade. Indian J Anaesth. 2011;55(4):384–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brull SJ, Murphy GS. Residual neuromuscular block: lessons unlearned. Part II: methods to reduce the risk of residual weakness. Anesth Analg. 2010;111(1):129–40. https://doi.org/10.1213/ANE.0b013e3181da8312. Epub 2010 May 4. Erratum in: Anesth Analg. 2012 Feb;114(2):390.

  21. Gaffar EA, et al. Kinemyography (KMG) versus Electromyography (EMG) neuromuscular monitoring in pediatric patients receiving cisatracurium during general anesthesia. Egypt J Anaesthesia. 2013;29(3):247–53.

    Article  Google Scholar 

  22. El-Orbany MI, Joseph NJ, Salem MR. The relationship of posttetanic count and train-of-four responses during recovery from intense cisatracurium-induced neuromuscular blockade. Anesth Analg. 2003;97(1):80–4. https://doi.org/10.1213/01.ane.0000063825.19503.49.

    Article  PubMed  Google Scholar 

  23. Thilen SR, Weigel WA, Todd MM, Dutton RP, Lien CA, Grant SA, Szokol JW, Eriksson LI, Yaster M, Grant MD, Agarkar M, Marbella AM, Blanck JF, Domino KB. American Society of Anesthesiologists Practice Guidelines for Monitoring and Antagonism of Neuromuscular Blockade: a report by the American Society of Anesthesiologists Task Force on Neuromuscular Blockade. Anesthesiology. 2023;2023(138):13–41. https://doi.org/10.1097/ALN.0000000000004379.

    Article  Google Scholar 

  24. Hawkins J, Khanna S, Argalious M. Sugammadex for reversal of neuromuscular blockade: uses and limitations. Curr Pharm Des. 2019;25(19):2140–8.

    Article  CAS  PubMed  Google Scholar 

  25. Forel JM, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34(11):2749–57.

    Article  CAS  PubMed  Google Scholar 

  26. Sottile PD, Albers D, Moss MM. Neuromuscular blockade is associated with the attenuation of biomarkers of epithelial and endothelial injury in patients with moderate-to-severe acute respiratory distress syndrome. Crit Care. 2018;22(1):63.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fanelli V, et al. Neuromuscular blocking agent cisatracurium attenuates lung injury by inhibition of nicotinic acetylcholine receptor-α1. Anesthesiology. 2016;124(1):132–40.

    Article  CAS  PubMed  Google Scholar 

  28. Khan MA, et al. Lipopolysaccharide upregulates α7 acetylcholine receptors: stimulation with GTS-21 mitigates growth arrest of macrophages and improves survival in burned mice. Shock. 2012;38(2):213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eisenkraft JB, Book WJ, Papatestas AE. Sensitivity to vecuronium in myasthenia gravis: a dose-response study. Can J Anaesth. 1990;37(3):301–6.

    Article  CAS  PubMed  Google Scholar 

  30. Nilsson E, Meretoja OA. Vecuronium dose-response and maintenance requirements in patients with myasthenia gravis. Anesthesiology. 1990;73(1):28–32.

    Article  CAS  PubMed  Google Scholar 

  31. Wainwright AP, Brodrick PM. Suxamethonium in myasthenia gravis. Anaesthesia. 1987;42(9):950–7.

    Article  CAS  PubMed  Google Scholar 

  32. Blichfeldt-Lauridsen L, Hansen BD. Anesthesia and myasthenia gravis. Acta Anaesthesiol Scand. 2012;56(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  33. Weingarten TN, et al. Lambert-Eaton myasthenic syndrome during anesthesia: a report of 37 patients. J Clin Anesth. 2014;26(8):648–53.

    Article  PubMed  Google Scholar 

  34. Telford RJ, Hollway TE. The myasthenic syndrome: anaesthesia in a patient treated with 3.4 diaminopyridine. Br J Anaesth. 1990;64(3):363–6. https://doi.org/10.1093/bja/64.3.363.

    Article  CAS  PubMed  Google Scholar 

  35. Martyn J. Clinical pharmacology and drug therapy in the burned patient. Anesthesiology. 1986;65(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  36. Martyn JA, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology. 2006;104(1):158–69.

    Article  CAS  PubMed  Google Scholar 

  37. Tsuneki H, Salas R, Dani JA. Mouse muscle denervation increases expression of an alpha7 nicotinic receptor with unusual pharmacology. J Physiol. 2003;547(Pt 1):169–79.

    Article  CAS  PubMed  Google Scholar 

  38. Gronert GA, Theye RA. Pathophysiology of hyperkalemia induced by succinylcholine. Anesthesiology. 1975;43(1):89–99.

    Article  CAS  PubMed  Google Scholar 

  39. Fambrough DM. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979;59(1):165–227.

    Article  CAS  PubMed  Google Scholar 

  40. Witzemann V, Brenner HR, Sakmann B. Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses. J Cell Biol. 1991;114(1):125–41.

    Article  CAS  PubMed  Google Scholar 

  41. Stäuble CG, Blobner M. The future of neuromuscular blocking agents. Curr Opin Anaesthesiol. 2020;33(4):490–8.

    Article  PubMed  Google Scholar 

  42. Boros EE, et al. Bis- and mixed-tetrahydroisoquinolinium chlorofumarates: new ultra-short-acting nondepolarizing neuromuscular blockers. J Med Chem. 1999;42(6):1114.

    Article  CAS  PubMed  Google Scholar 

  43. Belmont MR, et al. Clinical pharmacology of GW280430A in humans. Anesthesiology. 2004;100(4):768–73.

    Article  CAS  PubMed  Google Scholar 

  44. Savarese JJ, et al. Rapid chemical antagonism of neuromuscular blockade by L-cysteine adduction to and inactivation of the olefinic (double-bonded) isoquinolinium diester compounds gantacurium (AV430A), CW 002, and CW 011. Anesthesiology. 2010;113(1):58–73.

    Article  CAS  PubMed  Google Scholar 

  45. de Boer HD, Carlos RV. New drug developments for neuromuscular blockade and reversal: gantacurium, CW002, CW011, and Calabadion. Curr Anesthesiol Rep. 2018;8(2):119–24.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Heerdt PM, et al. Dose-response and cardiopulmonary side effects of the novel neuromuscular-blocking drug CW002 in man. Anesthesiology. 2016;125(6):1136–43.

    Article  CAS  PubMed  Google Scholar 

  47. Jiang Y, et al. Safety, tolerability, and pharmacokinetics of adamgammadex sodium, a novel agent to reverse the action of rocuronium and vecuronium, in healthy volunteers. Eur J Pharm Sci. 2020;141:105134.

    Article  CAS  PubMed  Google Scholar 

  48. Hoffmann U, et al. Calabadion: a new agent to reverse the effects of benzylisoquinoline and steroidal neuromuscular-blocking agents. Anesthesiology. 2013;119(2):317–25.

    Article  CAS  PubMed  Google Scholar 

  49. Haerter F, et al. Comparative effectiveness of calabadion and sugammadex to reverse non-depolarizing neuromuscular-blocking agents. Anesthesiology. 2015;123(6):1337–49.

    Article  CAS  PubMed  Google Scholar 

  50. • Dahan A, et al. From breathtaking to encapsulation: a novel approach to reverse respiratory depression from opioid overdosing. Br J Anaesth. 2020;125(1):e16–7. A description of the novel use of calabadion I to reverse opioid-induced respiratory depression.

    Article  PubMed  Google Scholar 

  51. Diaz-Gil D, et al. A novel strategy to reverse general anesthesia by scavenging with the acyclic cucurbit[n]uril-type molecular container calabadion 2. Anesthesiology. 2016;125(2):333–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supported in part by grants from the R01GM142042 and Shriners Hospitals Research Philanthropy (to J.A.J.M.)

Author information

Authors and Affiliations

Authors

Contributions

J.L.S. prepared the main manuscript text. J.A.J.M. revised the text critically for important intellectual content and prepared Figs. 1A and 1B. Both authors reviewed the manuscript in its entirety and approved the version to be published.

Corresponding author

Correspondence to Jamie L. Sparling.

Ethics declarations

Ethical Approval

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sparling, J.L., Martyn, J.A.J. Physiology of Neuromuscular Transmission and Applied Pharmacology of Muscle Relaxants. Curr Anesthesiol Rep 13, 269–278 (2023). https://doi.org/10.1007/s40140-023-00584-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-023-00584-y

Keywords

Navigation