Skip to main content
Log in

Monitoring the Depth of Neuromuscular Blockade

  • Neuromuscular Blockade (CA Lien, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In 2023, the American Society of Anesthesiologists published its first practice guideline document regarding the monitoring and antagonism of neuromuscular blockade. Those guidelines specifically recommend the use of QUANTITATIVE neuromuscular blockade monitoring — and recommend AGAINST relying on clinical assessments or dependence on the use of peripheral nerve stimulator (PNS — qualitative monitoring). This article reviews the data behind those recommendations.

Recent Findings

We describe the general failure of most clinical assessments (e.g., head lift, grip strength) to verify full reversal [as defined as a train-of-four (TOF) ratio of > 0.9 using quantitative methods] as well as the insensitivity of information obtained by the use of a PNS, such as the visual assessment of the TOF, tetanus, or double-burst stimulation (DBS) — although we recognize that a PNS can be used to titrate intraoperative dosing of neuromuscular blocking drugs and under very limited conditions can allow successful reversal with either neostigmine or sugammadex. Finally, we review quantitative technology and pros and cons of different methods (acceleromyography, electromyography, kinemyography) and attempt to provide evidence that even with the use of sugammadex, it is impossible to reliably ensure complete reversal without such quantitative monitoring.

Summary

Careful — and ideally quantitative — neuromuscular blockade monitoring is the only known method for ensuring complete reversal after any surgical procedure involving non-depolarizing relaxants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Notes

  1. The fact that a high-frequency stimulus (e.g., 50–100 Hz) tetanus could evoke “fade” in the presence of paralytic drugs had been known for decades.

  2. None of these monitors — nor PNS units — should be used on the face. The potential for egregiously misleading results is too great, either because of direct muscle stimulation or because of the huge difference in the dose–response characteristics of facial muscles to neuromuscular blockade as compared with the ulnar nerve [1].

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Thilen SR, Weigel WA, Todd MM, Dutton RP, Lien CA, Grant SA, et al. 2023 American Society of Anesthesiologists practice guidelines for monitoring and antagonism of neuromuscular blockade: a report by the American Society of Anesthesiologists Task Force on Neuromuscular Blockade. Anesthesiology. 2023;138(1):13–41. This is the most rigorous evidence-based comprehensive review of neuromuscular blockade monitoring published to date.

  2. Ali HH, Utting JE, Gray TC. Quantitative assessment of residual antidepolarizing block (PART I). Br J Anaesth. 1971;43(5):473–7.

    Article  CAS  PubMed  Google Scholar 

  3. Ali HH, Kitz RJ. Evaluation of recovery from nondepolarizing neuromuscular block, using a digital neuromuscular transmission analyzer: preliminary report. Anesth Analg. 1973;52(5):740–4.

    Article  CAS  PubMed  Google Scholar 

  4. Kopman Aaron F, Yee Pamela S, Neuman GG. Relationship of the train-of-four fade ratio to clinical signs and symptoms of residual paralysis in awake volunteers. Anesthesiology. 1997;86(4):765–71.

    Article  Google Scholar 

  5. Unterbuchner C, Blobner M, Pühringer F, Janda M, Bischoff S, Bein B, et al. Development of an algorithm using clinical tests to avoid post-operative residual neuromuscular block. BMC Anesthesiol. 2017;17(1):101.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Heier T, Caldwell JE, Feiner JR, Liu L, Ward T, Wright PMC. Relationship between normalized adductor pollicis train-of-four ratio and manifestations of residual neuromuscular block: a study using acceleromyography during near steady-state concentrations of mivacurium. Anesthesiology. 2010;113(4):825–32.

    Article  PubMed  Google Scholar 

  7. Eriksson Lars I, Sundman E, Olsson R, Nilsson L, Witt H, Ekberg O, Kuylenstierna R. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans : simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology. 1997;87(5):1035–43.

    Article  Google Scholar 

  8. Debaene B, Plaud B, Dilly MP, Donati F. Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action. Anesthesiology. 2003;98(5):1042–8.

    Article  CAS  PubMed  Google Scholar 

  9. Churchill-Davidson HC. Neuromuscular block in man. Anesthesiology. 1956;17(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  10. Katz RL. A nerve stimulator for the continuous monitoring of muscle relaxant action. Anesthesiology. 1965;26(6):832–3.

    Article  CAS  PubMed  Google Scholar 

  11. Viby-Mogensen J, Jensen NH, Engbaek J, Ording H, Skovgaard LT, Chraemmer-Jørgensen B. Tactile and visual evaluation of the response to train-of-four nerve stimulation. Anesthesiology. 1985;63(4):440–3.

    Article  CAS  PubMed  Google Scholar 

  12. Thilen SR, Ng IC, Cain KC, Treggiari MM, Bhananker SM. Management of rocuronium neuromuscular block using a protocol for qualitative monitoring and reversal with neostigmine. Br J Anaesth. 2018;121(2):367–77.

    Article  CAS  PubMed  Google Scholar 

  13. Fuchs-Buder T, Meistelman C, Alla F, Grandjean A, Wuthrich Y, Donati F. Antagonism of low degrees of atracurium-induced neuromuscular blockade: dose-effect relationship for neostigmine. Anesthesiology. 2010;112(1):34–40.

    Article  PubMed  Google Scholar 

  14. Beemer GH, Reeves JH. An evaluation of eight peripheral nerve stimulators for monitoring neuromuscular blockade. Anaesth Intensive Care. 1988;16(4):464–72.

    Article  CAS  PubMed  Google Scholar 

  15. Capron F, Fortier LP, Racine S, Donati F. Tactile fade detection with hand or wrist stimulation using train-of-four, double-burst stimulation, 50-hertz tetanus, 100-hertz tetanus, and acceleromyography. Anesth Analg. 2006;102(5):1578–84.

    Article  PubMed  Google Scholar 

  16. Viby-Mogensen J, Howardy-Hansen P, Chraemmer-Jørgensen B, Ording H, Engbaek J, Nielsen A. Posttetanic count (PTC): a new method of evaluating an intense nondepolarizing neuromuscular blockade. Anesthesiology. 1981;55(4):458–61.

    Article  CAS  PubMed  Google Scholar 

  17. • Bowdle A, Haththotuwegama KJ, Jelacic S, Nguyen ST, Togashi K, Michaelsen KE. A dose-finding study of sugammadex for reversal of rocuronium in cardiac surgery patients and postoperative monitoring for recurrent paralysis. Anesthesiology. 2023;139(1):6–15. The first careful determination of the required reversal doses of sugammadex - and a demonstration that the manufacturers recommendations may be inadequate in some patients.

  18. Fortier L-P, McKeen D, Turner K, de Médicis É, Warriner B, Jones PM, et al. The RECITE Study: a Canadian prospective, multicenter study of the incidence and severity of residual neuromuscular blockade. Anesth Analg. 2015;121(2):366–72.

    Article  PubMed  Google Scholar 

  19. Liang SS, Stewart PA, Phillips S. An ipsilateral comparison of acceleromyography and electromyography during recovery from nondepolarizing neuromuscular block under general anesthesia in humans. Anesth Analg. 2013;117(2):373–9.

    Article  PubMed  Google Scholar 

  20. Suzuki T, Fukano N, Kitajima O, Saeki S, Ogawa S. Normalization of acceleromyographic train-of-four ratio by baseline value for detecting residual neuromuscular block. Br J Anaesth. 2006;96(1):44–7.

    Article  CAS  PubMed  Google Scholar 

  21. Claudius C, Viby-Mogensen J. Acceleromyography for use in scientific and clinical practice: a systematic review of the evidence. Anesthesiology. 2008;108(6):1117–40.

    Article  PubMed  Google Scholar 

  22. Kopman A, Kumar S, Klewicka M, Neuman G. The staircase phenomenon: Implications for monitoring of neuromuscular transmission. Anesthesiology. 2001;95:403–7.

    Article  CAS  PubMed  Google Scholar 

  23. Capron F, Alla F, Hottier C, Meistelman C, Fuchs-Buder T. Can acceleromyography detect low levels of residual paralysis? A probability approach to detect a mechanomyographic train-of-four ratio of 0.9. Anesthesiology. 2004;100(5):1119–24.

    Article  PubMed  Google Scholar 

  24. Motamed C, Kirov K, Combes X, Duvaldestin P. Comparison between the Datex-Ohmeda M-NMT module and a force-displacement transducer for monitoring neuromuscular blockade. Eur J Anaesthesiol. 2003;20(6):467–9.

    Article  CAS  PubMed  Google Scholar 

  25. Gaffar EA, Fattah SA, Atef HM, Omera MA, Abdel-Aziz MA. Kinemyography (KMG) versus electromyography (EMG) neuromuscular monitoring in pediatric patients receiving cisatracurium during general anesthesia. Egyptian J Anaesthesia. 2013;29(3):247–53.

    Article  Google Scholar 

  26. Hemmerling TM, Donati F. The M-NMT mechanosensor cannot be considered as a reliable clinical neuromuscular monitor in daily anesthesia practice. Anesth Analg. 2002;95(6):1826–7, author reply 7.

  27. Naguib M, Brull SJ, Johnson KB. Conceptual and technical insights into the basis of neuromuscular monitoring. Anaesthesia. 2017;72:16–37.

    Article  PubMed  Google Scholar 

  28. Engbaek J, Roed J, Hangaard N, Viby-Mogensen J. The agreement between adductor pollicis mechanomyogram and first dorsal interosseous electromyogram. A pharmacodynamic study of rocuronium and vecuronium. Acta Anaesthesiol Scand. 1994;38(8):869–78.

    Article  CAS  PubMed  Google Scholar 

  29. Brull SJ, Murphy GS. Residual neuromuscular block: lessons unlearned. Part II: methods to reduce the risk of residual weakness. Anesth Analg. 2010;111(1):129–40.

  30. Hemmerling TM, Schmidt J, Hanusa C, Wolf T, Schmitt H. Simultaneous determination of neuromuscular block at the larynx, diaphragm, adductor pollicis, orbicularis oculi and corrugator supercilii muscles. Br J Anaesth. 2000;85(6):856–60.

    Article  CAS  PubMed  Google Scholar 

  31. Bowdle A, Bussey L, Michaelsen K, Jelacic S, Nair B, Togashi K, Hulvershorn J. A comparison of a prototype electromyograph vs. a mechanomyograph and an acceleromyograph for assessment of neuromuscular blockade. Anaesthesia. 2020;75(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  32. Saager L, Maiese EM, Bash LD, Meyer TA, Minkowitz H, Groudine S, et al. Incidence, risk factors, and consequences of residual neuromuscular block in the United States: the prospective, observational, multicenter RECITE-US study. J Clin Anesth. 2019;55:33–41.

    Article  PubMed  Google Scholar 

  33. Murphy Glenn S, Szokol Joseph W, Marymont Jesse H, Greenberg Steven B, Avram Michael J, Vender Jeffery S, Nisman M. Intraoperative acceleromyographic monitoring reduces the risk of residual neuromuscular blockade and adverse respiratory events in the postanesthesia care unit. Anesthesiology. 2008;109(3):389–98.

    Article  CAS  PubMed  Google Scholar 

  34. Murphy GS, Szokol JW, Avram MJ, Greenberg SB, Marymont JH, Vender JS, et al. Intraoperative acceleromyography monitoring reduces symptoms of muscle weakness and improves quality of recovery in the early postoperative period. Anesthesiology. 2011;115(5):946–54.

    Article  PubMed  Google Scholar 

  35. Domenech G, Kampel MA, García Guzzo ME, Novas DS, Terrasa SA, Fornari GG. Usefulness of intra-operative neuromuscular blockade monitoring and reversal agents for postoperative residual neuromuscular blockade: a retrospective observational study. BMC Anesthesiol. 2019;19(1):143.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Thilen SR, Sherpa JR, James AM, Cain KC, Treggiari MM, Bhananker SM. Management of muscle relaxation with rocuronium and reversal with neostigmine or sugammadex guided by quantitative neuromuscular monitoring. Anesthesia Analgesia. 2023:https://doi.org/10.1213/ANE.0000000000006511.

  37. Donati F. Residual paralysis: a real problem or did we invent a new disease? Canadian J Anesthesia J Canadien d’anesthésie. 2013;60(7):714–29.

    Article  Google Scholar 

  38. Martinez-Ubieto J, Ortega-Lucea S, Pascual-Bellosta A, Arazo-Iglesias I, Gil-Bona J, Jimenez-Bernardó T, Muñoz-Rodriguez L. Prospective study of residual neuromuscular block and postoperative respiratory complications in patients reversed with neostigmine versus sugammadex. Minerva Anestesiol. 2016;82(7):735–42.

    PubMed  Google Scholar 

  39. Berg H, Roed J, Viby-Mogensen J, Mortensen CR, Engbaek J, Skovgaard LT, Krintel JJ. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand. 1997;41(9):1095–103.

    Article  CAS  PubMed  Google Scholar 

  40. Todd MM, Hindman BJ, King BJ. The implementation of quantitative electromyographic neuromuscular monitoring in an academic anesthesia department. Anesth Analg. 2014;119(2):323–31.

    Article  PubMed  Google Scholar 

  41. Blobner M, Hunter JM, Meistelman C, Hoeft A, Hollmann MW, Kirmeier E, et al. Use of a train-of-four ratio of 0.95 versus 0.9 for tracheal extubation: an exploratory analysis of POPULAR data. British J Anaesthesia. 2020;124(1):63–72.

    Article  Google Scholar 

  42. Edwards L-A, Ly N, Shinefeld J, Morewood G. Universal quantitative neuromuscular blockade monitoring at an academic medical center—a multimodal analysis of the potential impact on clinical outcomes and total cost of care. Perioper Care Oper Room Manage. 2021;24:100184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Michael M. Todd MD.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindenbaum, L., Hindman, B.J. & Todd, M.M. Monitoring the Depth of Neuromuscular Blockade. Curr Anesthesiol Rep 14, 1–7 (2024). https://doi.org/10.1007/s40140-023-00580-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-023-00580-2

Keywords

Navigation