Skip to main content

Advertisement

Log in

Mechanisms, Diagnosis, and Medical Management of Hyperalgesia: an Educational Review

  • Pain Medicine (GJ Meredith, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Hyperalgesia may be an iatrogenic consequence of surgery or pain management. Thus, it is essential for anesthesiologists, pain management specialists, surgeons, and primary care physicians to regularly update their awareness and strategies for addressing this problem. This educational review of hyperalgesia provides up-to-date knowledge of the contributing mechanisms, differential diagnoses, and medical therapy. A particular focus is placed on common types of postoperative hyperalgesia and recent evidence that anesthesiologists and surgeons should be aware of.

Recent Findings

Hyperalgesia may acutely manifest due to tissue injury and peripheral sensitization; it can progress to a chronic condition developing from central nervous system sensitization. While clinical evaluation begins with a detailed history, physical examination, and sensory testing, an improved understanding of the clinical and cellular mechanisms involved in hyperalgesia pathology continues to drive future research and advance our understanding of this complex presentation.

Summary

Opioid-induced hyperalgesia may be confused with opioid tolerance and withdrawal and must also be differentiated from other diagnoses to optimize patient management and promote disease regression. Hyperalgesia is a common clinical condition with evolving guidelines for testing and treatment. Opioid-induced hyperalgesia is a potential cause of hyperalgesia and must be differentiated to optimize therapeutic decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

reproduced with permission from Roekel, Neuroscience, 2016;338:160–82 [26])

Fig. 2

reproduced with permission from Cook, Trend Immunol 2018;39:240–55 [40])

Fig. 3

reproduced with permission from Dureja, J Pain Res 2017;10:709–36 [43]

Fig. 4

reproduced with permission from Viana, Handb Clin Neurol 2018:156:103–19 [77])

Fig. 5

reproduced with permission from Gilron, Lancet Neurol 2013;12:1084–95 [7])

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Jensen TS, Baron R, Haanpaa M, Kalso E, Loeser JD, Rice AS, Treede RD. A new definition of neuropathic pain. Pain. 2011;152(10):2204–5. https://doi.org/10.1016/j.pain.2011.06.017.

    Article  PubMed  Google Scholar 

  2. Cruccu G, Sommer C, Anand P, Attal N, Baron R, Garcia-Larrea L, Haanpaa M, Jensen TS, Serra J, Treede RD. EFNS guidelines on neuropathic pain assessment: revised 2009. Eur J Neurol. 2010;17(8):1010–8. https://doi.org/10.1111/j.1468-1331.2010.02969.x.

    Article  CAS  PubMed  Google Scholar 

  3. • Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70(18):1630–5. https://doi.org/10.1212/01.wnl.0000282763.29778.59.

    Article  CAS  PubMed  Google Scholar 

  4. • Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 2014;13(9):924–35. https://doi.org/10.1016/S1474-4422(14)70102-4. Both of these articles are written by key players in the field and summarize keypoints about allodynia, hyperalgesia, and neuropathic pain.

  5. Baron R, Maier C, Attal N, Binder A, Bouhassira D, Cruccu G, Finnerup NB, Haanpaa M, Hansson P, Hullemann P, Jensen TS, Freynhagen R, Kennedy JD, Magerl W, Mainka T, Reimer M, Rice AS, Segerdahl M, Serra J, Sindrup S, Sommer C, Tolle T, Vollert J, Treede RD. Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain. 2017;158(2):261–72. https://doi.org/10.1097/j.pain.0000000000000753.

    Article  PubMed  Google Scholar 

  6. Kitab SA, Miele VJ, Lavelle WF, Benzel EC. Pathoanatomic basis for stretch-induced lumbar nerve root injury with a review of the literature. Neurosurgery. 2009;65(1):161–7; discussion 7–8. https://doi.org/10.1227/01.NEU.0000347002.67982.8F.

  7. Gilron I, Jensen TS, Dickenson AH. Combination pharmacotherapy for management of chronic pain: from bench to bedside. Lancet Neurol. 2013;12(11):1084–95. https://doi.org/10.1016/S1474-4422(13)70193-5.

    Article  CAS  PubMed  Google Scholar 

  8. Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and prevention. Lancet. 2006;367(9522):1618–25. https://doi.org/10.1016/S0140-6736(06)68700-X.

    Article  PubMed  Google Scholar 

  9. Estebe JP, Davies JM, Richebe P. The pneumatic tourniquet: mechanical, ischaemia-reperfusion and systemic effects. Eur J Anaesthesiol. 2011;28(6):404–11. https://doi.org/10.1097/EJA.0b013e328346d5a9.

    Article  PubMed  Google Scholar 

  10. Birdsong WT, Fierro L, Williams FG, Spelta V, Naves LA, Knowles M, Marsh-Haffner J, Adelman JP, Almers W, Elde RP, McCleskey EW. Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels. Neuron. 2010;68(4):739–49. https://doi.org/10.1016/j.neuron.2010.09.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sylven C, Beermann B, Jonzon B, Brandt R. Angina pectoris-like pain provoked by intravenous adenosine in healthy volunteers. Br Med J (Clin Res Ed). 1986;293(6541):227–30. https://doi.org/10.1136/bmj.293.6541.227.

    Article  CAS  Google Scholar 

  12. Sohn CI, Park HJ, Gebhart GF. Adenosine receptor agonists modulate visceral hyperalgesia in the rat. Gut Liver. 2008;2(1):39–46. https://doi.org/10.5009/gnl.2008.2.1.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu GY, Shenoy M, Winston JH, Mittal S, Pasricha PJ. P2X receptor-mediated visceral hyperalgesia in a rat model of chronic visceral hypersensitivity. Gut. 2008;57(9):1230–7. https://doi.org/10.1136/gut.2007.134221.

    Article  CAS  PubMed  Google Scholar 

  14. Hellman KM, Yu PY, Oladosu FA, Segel C, Han A, Prasad PV, Jilling T, Tu FF. The effects of platelet-activating factor on uterine contractility, perfusion, hypoxia, and pain in mice. Reprod Sci. 2018;25(3):384–94. https://doi.org/10.1177/1933719117715122.

    Article  CAS  PubMed  Google Scholar 

  15. Lam KK, Kunder S, Wong J, Doufas AG, Chung F. Obstructive sleep apnea, pain, and opioids: is the riddle solved? Curr Opin Anaesthesiol. 2016;29(1):134–40. https://doi.org/10.1097/ACO.0000000000000265.

    Article  PubMed  Google Scholar 

  16. Ryan S, Taylor CT, McNicholas WT. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation. 2005;112(17):2660–7. https://doi.org/10.1161/CIRCULATIONAHA.105.556746.

    Article  CAS  PubMed  Google Scholar 

  17. Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci. 2008;28(20):5189–94. https://doi.org/10.1523/JNEUROSCI.3338-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown KA. Intermittent hypoxia and the practice of anesthesia. Anesthesiology. 2009;110(4):922–7. https://doi.org/10.1097/ALN.0b013e31819c480a.

    Article  PubMed  Google Scholar 

  19. Lydic R, Baghdoyan HA. Sleep, anesthesiology, and the neurobiology of arousal state control. Anesthesiology. 2005;103(6):1268–95. https://doi.org/10.1097/00000542-200512000-00024.

    Article  PubMed  Google Scholar 

  20. Chandrakantan A, Musso MF, Floyd T, Adler AC. Pediatric obstructive sleep apnea: Preoperative and neurocognitive considerations for perioperative management. Paediatr Anaesth. 2020. https://doi.org/10.1111/pan.13855.

    Article  PubMed  Google Scholar 

  21. Brown KA, Laferriere A, Lakheeram I, Moss IR. Recurrent hypoxemia in children is associated with increased analgesic sensitivity to opiates. Anesthesiology. 2006;105(4):665–9. https://doi.org/10.1097/00000542-200610000-00009.

    Article  PubMed  Google Scholar 

  22. Sadhasivam S, Chidambaran V, Ngamprasertwong P, Esslinger HR, Prows C, Zhang X, Martin LJ, McAuliffe J. Race and unequal burden of perioperative pain and opioid related adverse effects in children. Pediatrics. 2012;129(5):832–8. https://doi.org/10.1542/peds.2011-2607.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rivat C, Ballantyne J. The dark side of opioids in pain management: basic science explains clinical observation. Pain Rep. 2016;1(2): e570. https://doi.org/10.1097/PR9.0000000000000570.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Colvin LA, Bull F, Hales TG. Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia. Lancet. 2019;393(10180):1558–68. https://doi.org/10.1016/S0140-6736(19)30430-1.

    Article  PubMed  Google Scholar 

  25. Silverman SM. Opioid induced hyperalgesia: clinical implications for the pain practitioner. Pain Physician. 2009;12(3):679–84.

    Article  PubMed  Google Scholar 

  26. Roeckel LA, Le Coz GM, Gaveriaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience. 2016;338:160–82. https://doi.org/10.1016/j.neuroscience.2016.06.029.

    Article  CAS  PubMed  Google Scholar 

  27. Cervero F, Tattersall JE. Somatic and visceral inputs to the thoracic spinal cord of the cat: marginal zone (lamina I) of the dorsal horn. J Physiol. 1987;388:383–95. https://doi.org/10.1113/jphysiol.1987.sp016620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vecchiet L, Vecchiet J, Giamberardino MA. Referred muscle pain: clinical and pathophysiologic aspects. Curr Rev Pain. 1999;3(6):489–98. https://doi.org/10.1007/s11916-999-0077-y.

    Article  CAS  PubMed  Google Scholar 

  29. Brink TS, Hellman KM, Lambert AM, Mason P. Raphe magnus neurons help protect reactions to visceral pain from interruption by cutaneous pain. J Neurophysiol. 2006;96(6):3423–32. https://doi.org/10.1152/jn.00793.2006.

    Article  PubMed  Google Scholar 

  30. Henrich F, Magerl W, Klein T, Greffrath W, Treede RD. Capsaicin-sensitive C- and A-fibre nociceptors control long-term potentiation-like pain amplification in humans. Brain. 2015;138(Pt 9):2505–20. https://doi.org/10.1093/brain/awv108.

    Article  PubMed  Google Scholar 

  31. Lenoir C, Plaghki L, Mouraux A, van den Broeke EN. Quickly responding C-fibre nociceptors contribute to heat hypersensitivity in the area of secondary hyperalgesia. J Physiol. 2018;596(18):4443–55. https://doi.org/10.1113/JP275977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kays J, Zhang YH, Khorodova A, Strichartz G, Nicol GD. Peripheral synthesis of an atypical protein kinase c mediates the enhancement of excitability and the development of mechanical hyperalgesia produced by nerve growth factor. Neuroscience. 2018;371:420–32. https://doi.org/10.1016/j.neuroscience.2017.12.030.

    Article  CAS  PubMed  Google Scholar 

  33. Bittar A, Jun J, La JH, Wang J, Leem JW, Chung JM. Reactive oxygen species affect spinal cell type-specific synaptic plasticity in a model of neuropathic pain. Pain. 2017;158(11):2137–46. https://doi.org/10.1097/j.pain.0000000000001014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haugan F, Rygh LJ, Tjolsen A. Ketamine blocks enhancement of spinal long-term potentiation in chronic opioid treated rats. Acta Anaesthesiol Scand. 2008;52(5):681–7. https://doi.org/10.1111/j.1399-6576.2008.01637.x.

    Article  CAS  PubMed  Google Scholar 

  35. Ge YX, Xin WJ, Hu NW, Zhang T, Xu JT, Liu XG. Clonidine depresses LTP of C-fiber evoked field potentials in spinal dorsal horn via NO-cGMP pathway. Brain Res. 2006;1118(1):58–65. https://doi.org/10.1016/j.brainres.2006.08.009.

    Article  CAS  PubMed  Google Scholar 

  36. Chatterjea D, Wetzel A, Mack M, Engblom C, Allen J, Mora-Solano C, Paredes L, Balsells E, Martinov T. Mast cell degranulation mediates compound 48/80-induced hyperalgesia in mice. Biochem Biophys Res Commun. 2012;425(2):237–43. https://doi.org/10.1016/j.bbrc.2012.07.074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baral P, Udit S, Chiu IM. Pain and immunity: implications for host defence. Nat Rev Immunol. 2019;19(7):433–47. https://doi.org/10.1038/s41577-019-0147-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. 2012;15(8):1063–7. https://doi.org/10.1038/nn.3144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mollanazar NK, Smith PK, Yosipovitch G. Mediators of chronic pruritus in atopic dermatitis: getting the itch out? Clin Rev Allergy Immunol. 2016;51(3):263–92. https://doi.org/10.1007/s12016-015-8488-5.

    Article  CAS  PubMed  Google Scholar 

  40. Cook AD, Christensen AD, Tewari D, McMahon SB, Hamilton JA. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 2018;39(3):240–55. https://doi.org/10.1016/j.it.2017.12.003.

    Article  CAS  PubMed  Google Scholar 

  41. Fujii T, Yamasaki R, Kira JI. Novel neuropathic pain mechanisms associated with allergic inflammation. Front Neurol. 2019;10:1337. https://doi.org/10.3389/fneur.2019.01337.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Malcangio M. Role of the immune system in neuropathic pain. Scand J Pain. 2019;20(1):33–7. https://doi.org/10.1515/sjpain-2019-0138.

    Article  PubMed  Google Scholar 

  43. Dureja GP, Iyer RN, Das G, Ahdal J, Narang P. Evidence and consensus recommendations for the pharmacological management of pain in India. J Pain Res. 2017;10:709–36. https://doi.org/10.2147/JPR.S128655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dolunay A, Senol SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S, Tunctan B. Inhibition of NLRP3 Inflammasome prevents LPS-Induced inflammatory hyperalgesia in mice: contribution of NF-kappaB, Caspase-1/11, ASC, NOX, and NOS Isoforms. Inflammation. 2017;40(2):366–86. https://doi.org/10.1007/s10753-016-0483-3.

    Article  CAS  PubMed  Google Scholar 

  45. He W, Long T, Pan Q, Zhang S, Zhang Y, Zhang D, Qin G, Chen L, Zhou J. Microglial NLRP3 inflammasome activation mediates IL-1beta release and contributes to central sensitization in a recurrent nitroglycerin-induced migraine model. J Neuroinflammation. 2019;16(1):78. https://doi.org/10.1186/s12974-019-1459-7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41(12):1012–21. https://doi.org/10.1016/j.tibs.2016.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu TT, Wang RR, Tang YY, Wu YX, Yu J, Hou WW, Lou GD, Zhou YD, Zhang SH, Chen Z. TLR4 deficiency abrogated widespread tactile allodynia, but not widespread thermal hyperalgesia and trigeminal neuropathic pain after partial infraorbital nerve transection. Pain. 2018;159(2):273–83. https://doi.org/10.1097/j.pain.0000000000001100.

    Article  CAS  PubMed  Google Scholar 

  48. Araldi D, Bogen O, Green PG, Levine JD. Role of nociceptor toll-like receptor 4 (TLR4) in opioid-induced hyperalgesia and hyperalgesic priming. J Neurosci. 2019;39(33):6414–24. https://doi.org/10.1523/JNEUROSCI.0966-19.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang LL, Shi DL, Gu HY, Zheng MZ, Hu J, Song XH, Shen YL, Chen YY. Resveratrol attenuates inflammatory hyperalgesia by inhibiting glial activation in mice spinal cords. Mol Med Rep. 2016;13(5):4051–7. https://doi.org/10.3892/mmr.2016.5027.

    Article  CAS  PubMed  Google Scholar 

  50. Jurga AM, Rojewska E, Makuch W, Mika J. Lipopolysaccharide from Rhodobacter sphaeroides (TLR4 antagonist) attenuates hypersensitivity and modulates nociceptive factors. Pharm Biol. 2018;56(1):275–86. https://doi.org/10.1080/13880209.2018.1457061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang TT, Xue R, Fan SY, Fan QY, An L, Li J, Zhu L, Ran YH, Zhang LM, Zhong BH, Li YF, Ye CY, Zhang YZ. Ammoxetine attenuates diabetic neuropathic pain through inhibiting microglial activation and neuroinflammation in the spinal cord. J Neuroinflammation. 2018;15(1):176. https://doi.org/10.1186/s12974-018-1216-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vanderwall AG, Milligan ED. Cytokines in pain: harnessing endogenous anti-inflammatory signaling for improved pain management. Front Immunol. 2019;10:3009. https://doi.org/10.3389/fimmu.2019.03009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jungen MJ, Ter Meulen BC, van Osch T, Weinstein HC, Ostelo R. Inflammatory biomarkers in patients with sciatica: a systematic review. BMC Musculoskelet Disord. 2019;20(1):156. https://doi.org/10.1186/s12891-019-2541-0.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Khan AN, Jacobsen HE, Khan J, Filippi CG, Levine M, Lehman RA Jr, Riew KD, Lenke LG, Chahine NO. Inflammatory biomarkers of low back pain and disc degeneration: a review. Ann N Y Acad Sci. 2017;1410(1):68–84. https://doi.org/10.1111/nyas.13551.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hung AL, Lim M, Doshi TL. Targeting cytokines for treatment of neuropathic pain. Scand J Pain. 2017;17:287–93. https://doi.org/10.1016/j.sjpain.2017.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nickel JC, Mills IW, Crook TJ, Jorga A, Smith MD, Atkinson G, Krieger JN. Tanezumab reduces pain in women with interstitial cystitis/bladder pain syndrome and patients with nonurological associated somatic syndromes. J Urol. 2016;195(4 Pt 1):942–8. https://doi.org/10.1016/j.juro.2015.10.178.

    Article  CAS  PubMed  Google Scholar 

  57. Schnitzer TJ, Easton R, Pang S, Levinson DJ, Pixton G, Viktrup L, Davignon I, Brown MT, West CR, Verburg KM. Effect of tanezumab on joint pain, physical function, and patient global assessment of osteoarthritis among patients with osteoarthritis of the hip or knee: a randomized clinical trial. JAMA. 2019;322(1):37–48. https://doi.org/10.1001/jama.2019.8044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gimbel JS, Kivitz AJ, Bramson C, Nemeth MA, Keller DS, Brown MT, West CR, Verburg KM. Long-term safety and effectiveness of tanezumab as treatment for chronic low back pain. Pain. 2014;155(9):1793–801. https://doi.org/10.1016/j.pain.2014.06.004.

    Article  CAS  PubMed  Google Scholar 

  59. Hasegawa S, Kohro Y, Shiratori M, Ishii S, Shimizu T, Tsuda M, Inoue K. Role of PAF receptor in proinflammatory cytokine expression in the dorsal root ganglion and tactile allodynia in a rodent model of neuropathic pain. PLoS ONE. 2010;5(5): e10467. https://doi.org/10.1371/journal.pone.0010467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Motoyama N, Morita K, Kitayama T, Shiraishi S, Uezono Y, Nishimura F, Kanematsu T, Dohi T. Pain-releasing action of platelet-activating factor (PAF) antagonists in neuropathic pain animal models and the mechanisms of action. Eur J Pain. 2013;17(8):1156–67. https://doi.org/10.1002/j.1532-2149.2013.00289.x.

    Article  CAS  PubMed  Google Scholar 

  61. Nemcsik J, Kordas K, Egresits J, Laszlo F, Laszlo FA, Pavo I, Morschl E. Synergistic interaction of endogenous platelet-activating factor and vasopressin in generating angina in rats. Eur J Pharmacol. 2004;498(1–3):195–202. https://doi.org/10.1016/j.ejphar.2004.07.057.

    Article  CAS  PubMed  Google Scholar 

  62. Lordan R, Tsoupras A, Zabetakis I, Demopoulos CA. Forty years since the structural elucidation of platelet-activating factor (paf): historical, current, and future research perspectives. Molecules. 2019;24(23). https://doi.org/10.3390/molecules24234414.

  63. Zhang Q, Sitzman LA, Al-Hassani M, Cai S, Pollok KE, Travers JB, Hingtgen CM. Involvement of platelet-activating factor in ultraviolet B-induced hyperalgesia. J Invest Dermatol. 2009;129(1):167–74. https://doi.org/10.1038/jid.2008.181.

    Article  CAS  PubMed  Google Scholar 

  64. Vargaftig BB, Lefort J, Chignard M, Benveniste J. Platelet-activating factor induces a platelet-dependent bronchoconstriction unrelated to the formation of prostaglandin derivatives. Eur J Pharmacol. 1980;65(2–3):185–92. https://doi.org/10.1016/0014-2999(80)90391-x.

    Article  CAS  PubMed  Google Scholar 

  65. Morita K, Morioka N, Abdin J, Kitayama S, Nakata Y, Dohi T. Development of tactile allodynia and thermal hyperalgesia by intrathecally administered platelet-activating factor in mice. Pain. 2004;111(3):351–9. https://doi.org/10.1016/j.pain.2004.07.016.

    Article  CAS  PubMed  Google Scholar 

  66. Potter P, Maspero JF, Vermeulen J, Barkai L, Nemeth I, Baillieau RA, Garde JM, Giralt J, Domenech A, Izquierdo I, Nieto A. Rupatadine oral solution in children with persistent allergic rhinitis: A randomized, double-blind, placebo-controlled study. Pediatr Allergy Immunol. 2013;24(2):144–50. https://doi.org/10.1111/pai.12036.

    Article  PubMed  Google Scholar 

  67. Werner J, Hartwig W, Hackert T, Kaiser H, Schmidt J, Gebhard MM, Buchler MW, Klar E. Multidrug strategies are effective in the treatment of severe experimental pancreatitis. Surgery. 2012;151(3):372–81. https://doi.org/10.1016/j.surg.2011.07.041.

    Article  PubMed  Google Scholar 

  68. Attal N, Bouhassira D, Baron R. Diagnosis and assessment of neuropathic pain through questionnaires. Lancet Neurol. 2018;17(5):456–66. https://doi.org/10.1016/S1474-4422(18)30071-1.

    Article  PubMed  Google Scholar 

  69. Bennett M. The LANSS Pain Scale: the Leeds assessment of neuropathic symptoms and signs. Pain. 2001;92(1–2):147–57. https://doi.org/10.1016/s0304-3959(00)00482-6.

    Article  CAS  PubMed  Google Scholar 

  70. Krause SJ, Backonja MM. Development of a neuropathic pain questionnaire. Clin J Pain. 2003;19(5):306–14. https://doi.org/10.1097/00002508-200309000-00004.

    Article  PubMed  Google Scholar 

  71. Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, Cunin G, Fermanian J, Ginies P, Grun-Overdyking A, Jafari-Schluep H, Lanteri-Minet M, Laurent B, Mick G, Serrie A, Valade D, Vicaut E. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain. 2005;114(1–2):29–36. https://doi.org/10.1016/j.pain.2004.12.010.

    Article  PubMed  Google Scholar 

  72. Freynhagen R, Baron R, Gockel U, Tolle TR. painDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr Med Res Opin. 2006;22(10):1911–20. https://doi.org/10.1185/030079906X132488.

    Article  PubMed  Google Scholar 

  73. Portenoy R. Development and testing of a neuropathic pain screening questionnaire: ID Pain. Curr Med Res Opin. 2006;22(8):1555–65. https://doi.org/10.1185/030079906X115702.

    Article  PubMed  Google Scholar 

  74. Martinez V, Attal N, Vanzo B, Vicaut E, Gautier JM, Bouhassira D, Lanteri-Minet M. Adherence of French GPs to chronic neuropathic pain clinical guidelines: results of a cross-sectional, randomized, “e” case-vignette survey. PLoS ONE. 2014;9(4): e93855. https://doi.org/10.1371/journal.pone.0093855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353(9168):1959–64. https://doi.org/10.1016/S0140-6736(99)01307-0.

    Article  CAS  PubMed  Google Scholar 

  76. Ochoa JL. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2009;72(14):1282–3. https://doi.org/10.1212/01.wnl.0000346325.50431.5f.

    Article  PubMed  Google Scholar 

  77. Viana F. Nociceptors: thermal allodynia and thermal pain. Handb Clin Neurol. 2018;156:103–19. https://doi.org/10.1016/B978-0-444-63912-7.00006-0.

    Article  PubMed  Google Scholar 

  78. Ziegler EA, Magerl W, Meyer RA, Treede RD. Secondary hyperalgesia to punctate mechanical stimuli. Central sensitization to A-fibre nociceptor input. Brain. 1999;122 ( Pt 12):2245–57. https://doi.org/10.1093/brain/122.12.2245.

  79. Woolf CJ. Central sensitization: uncovering the relation between pain and plasticity. Anesthesiology. 2007;106(4):864–7. https://doi.org/10.1097/01.anes.0000264769.87038.55.

    Article  PubMed  Google Scholar 

  80. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2-15. https://doi.org/10.1016/j.pain.2010.09.030.

    Article  PubMed  Google Scholar 

  81. • Kim SH, Stoicea N, Soghomonyan S, Bergese SD. Remifentanil-acute opioid tolerance and opioid-induced hyperalgesia: a systematic review. Am J Ther. 2015;22(3):e62-74. https://doi.org/10.1097/MJT.0000000000000019. This article describes the role of remifentanil in OIH.

    Article  PubMed  Google Scholar 

  82. Katz NP, Paillard FC, Edwards RR. Review of the performance of quantitative sensory testing methods to detect hyperalgesia in chronic pain patients on long-term opioids. Anesthesiology. 2015;122(3):677–85. https://doi.org/10.1097/ALN.0000000000000530.

    Article  CAS  PubMed  Google Scholar 

  83. Rolke R, Baron R, Maier C, Tolle TR, Treede RD, Beyer A, Binder A, Birbaumer N, Birklein F, Botefur IC, Braune S, Flor H, Huge V, Klug R, Landwehrmeyer GB, Magerl W, Maihofner C, Rolko C, Schaub C, Scherens A, Sprenger T, Valet M, Wasserka B. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain. 2006;123(3):231–43. https://doi.org/10.1016/j.pain.2006.01.041.

    Article  CAS  PubMed  Google Scholar 

  84. Rolke R, Magerl W, Campbell KA, Schalber C, Caspari S, Birklein F, Treede RD. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain. 2006;10(1):77–88. https://doi.org/10.1016/j.ejpain.2005.02.003.

    Article  CAS  PubMed  Google Scholar 

  85. Eisenberg E, Burstein Y, Suzan E, Treister R, Aviram J. Spinal cord stimulation attenuates temporal summation in patients with neuropathic pain. Pain. 2015;156(3):381–5. https://doi.org/10.1097/01.j.pain.0000460342.69718.a2.

    Article  PubMed  Google Scholar 

  86. Yarnitsky D, Granot M, Nahman-Averbuch H, Khamaisi M, Granovsky Y. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain. 2012;153(6):1193–8. https://doi.org/10.1016/j.pain.2012.02.021.

    Article  CAS  PubMed  Google Scholar 

  87. Edwards RR, Haythornthwaite JA, Tella P, Max MB, Raja S. Basal heat pain thresholds predict opioid analgesia in patients with postherpetic neuralgia. Anesthesiology. 2006;104(6):1243–8. https://doi.org/10.1097/00000542-200606000-00020.

    Article  PubMed  Google Scholar 

  88. Olesen SS, Graversen C, Bouwense SA, van Goor H, Wilder-Smith OH, Drewes AM. Quantitative sensory testing predicts pregabalin efficacy in painful chronic pancreatitis. PLoS ONE. 2013;8(3): e57963. https://doi.org/10.1371/journal.pone.0057963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. • Attal N, Cruccu G, Baron R, Haanpaa M, Hansson P, Jensen TS, Nurmikko T, European Federation of Neurological S. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol. 2010;17(9):1113-e88. https://doi.org/10.1111/j.1468-1331.2010.02999.x. This treatment guideline explans the EFNS guidelins on neuropathic pain.

  90. Janda AM, As-Sanie S, Rajala B, Tsodikov A, Moser SE, Clauw DJ, Brummett CM. Fibromyalgia survey criteria are associated with increased postoperative opioid consumption in women undergoing hysterectomy. Anesthesiology. 2015;122(5):1103–11. https://doi.org/10.1097/ALN.0000000000000637.

    Article  CAS  PubMed  Google Scholar 

  91. Brummett CM, Janda AM, Schueller CM, Tsodikov A, Morris M, Williams DA, Clauw DJ. Survey criteria for fibromyalgia independently predict increased postoperative opioid consumption after lower-extremity joint arthroplasty: a prospective, observational cohort study. Anesthesiology. 2013;119(6):1434–43. https://doi.org/10.1097/ALN.0b013e3182a8eb1f.

    Article  CAS  PubMed  Google Scholar 

  92. Brandsborg B, Nikolajsen L, Hansen CT, Kehlet H, Jensen TS. Risk factors for chronic pain after hysterectomy: a nationwide questionnaire and database study. Anesthesiology. 2007;106(5):1003–12. https://doi.org/10.1097/01.anes.0000265161.39932.e8.

    Article  PubMed  Google Scholar 

  93. Majeed MH, Ali AA, Sudak DM. Psychotherapeutic interventions for chronic pain: Evidence, rationale, and advantages. Int J Psychiatry Med. 2019;54(2):140–9. https://doi.org/10.1177/0091217418791447.

    Article  PubMed  Google Scholar 

  94. Kapur BM, Lala PK, Shaw JL. Pharmacogenetics of chronic pain management. Clin Biochem. 2014;47(13–14):1169–87. https://doi.org/10.1016/j.clinbiochem.2014.05.065.

    Article  CAS  PubMed  Google Scholar 

  95. Clarke H, Katz J, Flor H, Rietschel M, Diehl SR, Seltzer Z. Genetics of chronic post-surgical pain: a crucial step toward personal pain medicine. Can J Anaesth. 2015;62(3):294–303. https://doi.org/10.1007/s12630-014-0287-6.

    Article  PubMed  Google Scholar 

  96. Wilder-Smith OH. Pre-emptive analgesia and surgical pain. Prog Brain Res. 2000;129:505–24. https://doi.org/10.1016/S0079-6123(00)29037-7.

    Article  CAS  PubMed  Google Scholar 

  97. Ilfeld BM. Continuous peripheral nerve blocks: an update of the published evidence and comparison with novel, alternative analgesic modalities. Anesth Analg. 2017;124(1):308–35. https://doi.org/10.1213/ANE.0000000000001581.

    Article  CAS  PubMed  Google Scholar 

  98. Rivat C, Bollag L, Richebe P. Mechanisms of regional anaesthesia protection against hyperalgesia and pain chronicization. Curr Opin Anaesthesiol. 2013;26(5):621–5. https://doi.org/10.1097/01.aco.0000432511.08070.de.

    Article  CAS  PubMed  Google Scholar 

  99. Reuben DB, Alvanzo AA, Ashikaga T, Bogat GA, Callahan CM, Ruffing V, Steffens DC. National institutes of health pathways to prevention workshop: the role of opioids in the treatment of chronic pain. Ann Intern Med. 2015;162(4):295–300. https://doi.org/10.7326/M14-2775.

    Article  PubMed  Google Scholar 

  100. Davis AM, Inturrisi CE. d-Methadone blocks morphine tolerance and N-methyl-D-aspartate-induced hyperalgesia. J Pharmacol Exp Ther. 1999;289(2):1048–53.

    CAS  PubMed  Google Scholar 

  101. Christoph T, De Vry J, Tzschentke TM. Tapentadol, but not morphine, selectively inhibits disease-related thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Neurosci Lett. 2010;470(2):91–4. https://doi.org/10.1016/j.neulet.2009.12.020.

    Article  CAS  PubMed  Google Scholar 

  102. Christoph A, Eerdekens MH, Kok M, Volkers G, Freynhagen R. Cebranopadol, a novel first-in-class analgesic drug candidate: first experience in patients with chronic low back pain in a randomized clinical trial. Pain. 2017;158(9):1813–24. https://doi.org/10.1097/j.pain.0000000000000986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cohen SP, Bhatia A, Buvanendran A, Schwenk ES, Wasan AD, Hurley RW, Viscusi ER, Narouze S, Davis FN, Ritchie EC, Lubenow TR, Hooten WM. Consensus guidelines on the use of intravenous ketamine infusions for chronic pain from the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg Anesth Pain Med. 2018;43(5):521–46. https://doi.org/10.1097/AAP.0000000000000808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Taniguchi K, Shinjo K, Mizutani M, Shimada K, Ishikawa T, Menniti FS, Nagahisa A. Antinociceptive activity of CP-101,606, an NMDA receptor NR2B subunit antagonist. Br J Pharmacol. 1997;122(5):809–12. https://doi.org/10.1038/sj.bjp.0701445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yamanaka D, Kawano T, Nishigaki A, Aoyama B, Tateiwa H, Shigematsu-Locatelli M, Locatelli FM, Yokoyama M. The preventive effects of dexmedetomidine on endotoxin-induced exacerbated post-incisional pain in rats. J Anesth. 2017;31(5):664–71. https://doi.org/10.1007/s00540-017-2374-7.

    Article  PubMed  Google Scholar 

  106. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, Gilron I, Haanpaa M, Hansson P, Jensen TS, Kamerman PR, Lund K, Moore A, Raja SN, Rice AS, Rowbotham M, Sena E, Siddall P, Smith BH, Wallace M. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162–73. https://doi.org/10.1016/S1474-4422(14)70251-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Verret M, Lauzier F, Zarychanski R, Savard X, Cossi MJ, Pinard AM, Leblanc G, Turgeon AF. Perioperative use of gabapentinoids for the management of postoperative acute pain: protocol of a systematic review and meta-analysis. Syst Rev. 2019;8(1):24. https://doi.org/10.1186/s13643-018-0906-3.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kumar AH, Habib AS. The role of gabapentinoids in acute and chronic pain after surgery. Curr Opin Anaesthesiol. 2019;32(5):629–34. https://doi.org/10.1097/ACO.0000000000000767.

    Article  CAS  PubMed  Google Scholar 

  109. Kim KH, Seo HJ, Abdi S, Huh B. All about pain pharmacology: what pain physicians should know. Korean J Pain. 2020;33(2):108–20. https://doi.org/10.3344/kjp.2020.33.2.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wiffen PJ, Knaggs R, Derry S, Cole P, Phillips T, Moore RA. Paracetamol (acetaminophen) with or without codeine or dihydrocodeine for neuropathic pain in adults. Cochrane Database Syst Rev. 2016;12:CD012227. https://doi.org/10.1002/14651858.CD012227.pub2.

  111. Moore RA, Chi CC, Wiffen PJ, Derry S, Rice AS. Oral nonsteroidal anti-inflammatory drugs for neuropathic pain. Cochrane Database Syst Rev. 2015(10):CD010902. https://doi.org/10.1002/14651858.CD010902.pub2.

  112. Comelon M, Raeder J, Stubhaug A, Nielsen CS, Draegni T, Lenz H. Gradual withdrawal of remifentanil infusion may prevent opioid-induced hyperalgesia. Br J Anaesth. 2016;116(4):524–30. https://doi.org/10.1093/bja/aev547.

    Article  CAS  PubMed  Google Scholar 

  113. Bernier LP, Ase AR, Seguela P. P2X receptor channels in chronic pain pathways. Br J Pharmacol. 2018;175(12):2219–30. https://doi.org/10.1111/bph.13957.

    Article  CAS  PubMed  Google Scholar 

  114. Keystone EC, Wang MM, Layton M, Hollis S, McInnes IB, Team DCS. Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann Rheum Dis. 2012;71(10):1630–5. https://doi.org/10.1136/annrheumdis-2011-143578.

    Article  Google Scholar 

  115. Stock TC, Bloom BJ, Wei N, Ishaq S, Park W, Wang X, Gupta P, Mebus CA. Efficacy and safety of CE-224,535, an antagonist of P2X7 receptor, in treatment of patients with rheumatoid arthritis inadequately controlled by methotrexate. J Rheumatol. 2012;39(4):720–7. https://doi.org/10.3899/jrheum.110874.

    Article  CAS  PubMed  Google Scholar 

  116. Smith JA, Kitt MM, Morice AH, Birring SS, McGarvey LP, Sher MR, Li YP, Wu WC, Xu ZJ, Muccino DR, Ford AP, Protocol I. Gefapixant, a P2X3 receptor antagonist, for the treatment of refractory or unexplained chronic cough: a randomised, double-blind, controlled, parallel-group, phase 2b trial. Lancet Respir Med. 2020;8(8):775–85. https://doi.org/10.1016/S2213-2600(19)30471-0.

    Article  CAS  PubMed  Google Scholar 

  117. Abdulqawi R, Dockry R, Holt K, Layton G, McCarthy BG, Ford AP, Smith JA. P2X3 receptor antagonist (AF-219) in refractory chronic cough: a randomised, double-blind, placebo-controlled phase 2 study. Lancet. 2015;385(9974):1198–205. https://doi.org/10.1016/S0140-6736(14)61255-1.

    Article  CAS  PubMed  Google Scholar 

  118. Lee LY, Gu Q, Xu F, Hong JL. Acid-sensing by airway afferent nerves. Pulm Pharmacol Ther. 2013;26(5):491–7. https://doi.org/10.1016/j.pupt.2013.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Duarte RV, Nevitt S, McNicol E, Taylor RS, Buchser E, North RB, Eldabe S. Systematic review and meta-analysis of placebo/sham controlled randomised trials of spinal cord stimulation for neuropathic pain. Pain. 2020;161(1):24–35. https://doi.org/10.1097/j.pain.0000000000001689.

    Article  PubMed  Google Scholar 

  120. Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, O’Callaghan J, Eisenberg E, Milbouw G, Buchser E, Fortini G, Richardson J, North RB. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain. 2007;132(1–2):179–88. https://doi.org/10.1016/j.pain.2007.07.028.

    Article  PubMed  Google Scholar 

  121. Dworkin RH, O'Connor AB, Kent J, Mackey SC, Raja SN, Stacey BR, Levy RM, Backonja M, Baron R, Harke H, Loeser JD, Treede RD, Turk DC, Wells CD, International Association for the Study of Pain Neuropathic Pain Special Interest G. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain. 2013;154(11):2249–61. https://doi.org/10.1016/j.pain.2013.06.004.

Download references

Acknowledgements

KMH acknowledges support from National Institute of Child and Human Development (HD098193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia H. Wilson.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pain Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, S.H., Hellman, K.M., James, D. et al. Mechanisms, Diagnosis, and Medical Management of Hyperalgesia: an Educational Review. Curr Anesthesiol Rep 11, 524–540 (2021). https://doi.org/10.1007/s40140-021-00485-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-021-00485-y

Keywords

Navigation