Skip to main content

Advertisement

Log in

Optimizing Intraoperative Neuromonitoring: Anesthetic Considerations

  • Neuroanesthesia (D Sharma, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Intraoperative neuromonitoring (IONM) offers near-real-time assessment of neuronal pathways during surgery. Anesthetic regimens and derangements in homeostasis may render IONM ineffective and challenge its clinical utility. We review important anesthetic considerations for optimizing IONM modalities sensitive to these factors including sensory- and motor-evoked potentials.

Recent Findings

Anesthetic management during IONM requires consideration and the balance of multiple competing goals related to depth of anesthesia, patient comorbidities, and surgical requirements. Inhalational anesthetics in higher concentrations unequivocally depress IONM signals and should be used judiciously or avoided altogether in specific cases. The addition of adjuncts such as dexmedetomidine and lidocaine to carefully composed and titrated intravenous anesthetic regimens allows for propofol dose reduction and the optimization of IONM. Hypothermia, cerebral/spinal cord hypoperfusion, and reduced oxygen delivery should be avoided and corrected to maintain homeostasis for optimized neuronal functioning and IONM.

Summary

Optimization of anesthetic management contributes to successful integration of IONM into perioperative care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Holdefer RN, MacDonald DB, Skinner SA. Somatosensory and motor evoked potentials as biomarkers for post-operative neurological status. Clin Neurophysiol. 2015;126(5):857–65. This is an example of a recent trend that emphasizes the use of IONM to improve outcomes.

    Article  CAS  Google Scholar 

  2. Skinner S, Holdefer R, McAuliffe JJ, Sala F. Medical error avoidance in intraoperative neurophysiological monitoring: the communication imperative. J Clin Neurophysiol. 2017;34(6):477–83.

    Article  Google Scholar 

  3. Ney JP, van der Goes DN. Comparative effectiveness analyses of intraoperative neurophysiological monitoring in spinal surgery. J Clin Neurophysiol. 2014;31(2):112–7.

    Article  Google Scholar 

  4. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):430–43.

    Article  Google Scholar 

  5. •• Antoun K, Sloan TB, Toleikis JR. Monitoring the nervous system for anesthesiologists and other health care professionals. New York: Springer; 2017. This is a comprehensive recent book specifically aimed to improve the understanding of anesthesiologists of IONM.

    Google Scholar 

  6. • Gunter A, Ruskin KJ. Intraoperative neurophysiologic monitoring: utility and anesthetic implications. Curr Opin Anaesthesiol. 2016;29(5):539–43. This article provides a nice review on how to optimize anesthetic regimens for IONM.

    Article  CAS  Google Scholar 

  7. •• Beard DJ, Mcleod DD, Logan CL, Murtha LA, Imtiaz MS, Van Helden DF, et al. Intracranial pressure elevation reduces flow through collateral vessels and the penetrating arterioles they supply. A possible explanation for “collateral failure” and infarct expansion after ischemic stroke. J Cereb Blood Flow Metab. 2015;35(5):861–72. This study provides insight into the detrimental effects of intracranial hypertension on pial collateral blood flow in experimental ischemic stroke animal models.

    Article  Google Scholar 

  8. • Farooq MU, Goshgarian C, Min J, Gorelick PB. Pathophysiology and management of reperfusion injury and hyperperfusion syndrome after carotid endarterectomy and carotid artery stenting. Exp Transl Stroke Med. 2016;8(1):1–8. This review summarizes the clinical significance, pathophsyiology, risk factors, and preventative and treatment strategies of cerebral hyperperfusion syndrome.

    Article  Google Scholar 

  9. Zanatta P, Bosco E, Comin A, Mazzarolo AP, Di Pasquale P, Forti A, et al. Effect of mild hypothermic cardiopulmonary bypass on the amplitude of somatosensory-evoked potentials. J Neurosurg Anesthesiol. 2014;26(2):161–6.

    Article  Google Scholar 

  10. • Plata Bello J, Pérez-Lorensu PJ, Roldán-Delgado H, Brage L, Rocha V, Hernández-Hernández V, et al. Role of multimodal intraoperative neurophysiological monitoring during positioning of patient prior to cervical spine surgery. Clin Neurophysiol. 2015;126(6):1264–70. This study concluded that multimodal IONM during positioning and response to changes in signals may prevent cervical spine injury during positoining for cervical spine surgery.

    Article  Google Scholar 

  11. Jameson LC, Janik DJ, Sloan TB. Electrophysiologic monitoring in neurosurgery. Anesthesiol Clin. 2007;25(3):605–30.

    Article  Google Scholar 

  12. Chong CT, Manninen P, Sivanaser V, Subramanyam R, Lu N, Venkatraghavan L. Direct comparison of the effect of desflurane and sevoflurane on intraoperative motor-evoked potentials monitoring. J Neurosurg Anesthesiol. 2014;26:306–12.

    Article  Google Scholar 

  13. Sloan TB, Koht A. Depression of cortical somatosensory evoked potentials by nitrous oxide. Br J Anaesth. 1985;57(9):849–52.

    Article  CAS  Google Scholar 

  14. Martin DP, Bhalla T, Thung A, Rice J, Beebe A, Samora W, et al. A preliminary study of volatile agents or total intravenous anesthesia for neurophysiological monitoring during posterior spinal fusion in adolescents with idiopathic scoliosis. Spine. 2014;39(22):E1318–24.

    Article  Google Scholar 

  15. •• Malcharek MJ, Loeffler S, Schiefer D, et al. Transcranial motor evoked potentials during anesthesia with desflurane versus propofol: a prospective randomized trial. Clin Neurophysiol. 2015;126(9):1825–32.This RCT demonstrated that desflurane as compared with propofol causes significant reductions in MEP amplitudes even in patients without preexisting neuronal deficits undergoing carotid endarterectomy.

    Article  CAS  Google Scholar 

  16. Holdefer RN, Anderson C, Furman M, Sangare Y, Slimp JC. A comparison of the effects of desflurane versus propofol on transcranial motor-evoked potentials in pediatric patients. Childs Nerv Syst. 2014;30:2103–8.

    Article  Google Scholar 

  17. Sloan TB, Toleikis JR, Toleikis SC, Koht A. Intraoperative neurophysiological monitoring during spine surgery with total intravenous anesthesia or balanced anesthesia with 3% desflurane. J Clin Monit Comput. 2015;29(1):77–85.

    Article  Google Scholar 

  18. Sloan TB, Ronai AK, Toleikis JR, Koht A. Improvement of intraoperative somatosensory evoked potentials by etomidate. Anesth Analg. 1988;67(6):582–5.

    Article  CAS  Google Scholar 

  19. Hans P, Dewandre P-Y, Brichant J-F, Bonhomme V. Comparative effects of ketamine on bispectral index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. Br J Anaesth. 2005;94:336–40.

    Article  CAS  Google Scholar 

  20. Stoicea N, Versteeg G, Florescu D, Joseph N, Fiorda-Diaz J, Navarrete V, Bergese SD Ketamine-based anesthetic protocols and evoked potential monitoring: a risk/benefit overview. Front Neurosci 2016;10:37.

  21. Asouhidou I, Katsaridis V, Vaidis G, Ioannou P, Givissis P, Christodoulou A, et al. Somatosensory evoked potentials suppression due to remifentanil during spinal operations: a prospective clinical study. Scoliosis. 2010;5(1) https://doi.org/10.1186/1748-7161-5-8.

  22. Mahmoud M, Sadhasivam S, Salisbury S, Nick TG, Schnell B, Sestokas AK, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 2010;112(6):1364–73.

    Article  CAS  Google Scholar 

  23. •• Li Y, Meng L, Peng Y, et al. Effects of dexmedetomidine on motor- and somatosensory-evoked potentials in patients with thoracic spinal cord tumor: a randomized controlled trial. BMC Anesthesiol. 2016;16(1):51.This RCT demonstrated that dexmedetomidine in clinically relevant doses did not affect SSEP and MEP monitoring while it allowed for lower propofol infusion rates.

    Article  Google Scholar 

  24. Sloan TB, Mongan P, Lyda C, Koht A. Lidocaine infusion adjunct to total intravenous anesthesia reduces the total dose of propofol during intraoperative neurophysiological monitoring. J Clin Monit Comput. 2014;28(2):139–47.

    Article  Google Scholar 

  25. Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology. 2003;99(3):716–37.

    Article  Google Scholar 

  26. Sloan TB. Muscle relaxant use during intraoperative neurophysiologic monitoring. J Clin Monit Comput. 2013;27(1):35–46.

    Article  Google Scholar 

  27. •• Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists: part I: background and basic signatures. Anesthesiology. 2015;123(4):937–60. An authoritative and well-illustrated review of the effect of anesthetics on EEG.

    Article  CAS  Google Scholar 

  28. Strandgaard S, Paulson O. Cerebral autoregulation. Stroke. 1984;15(3):413–6.

    Article  CAS  Google Scholar 

  29. Paulson OB, Strandgaard S, Evinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.

    CAS  PubMed  Google Scholar 

  30. Astrup J, Symon L, Branston NM, Lassen NA. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke. 1977;8(1):51–7.

    Article  CAS  Google Scholar 

  31. Branston NM, Symon L, Crockard HA, Pasztor E. Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol. 1974;45(2):195–208.

    Article  CAS  Google Scholar 

  32. Pires P, Ramos C, Matin N, Dorrance A. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. 2013;304:H1598–614.

    Article  CAS  Google Scholar 

  33. Brian JE. Carbon dioxide and the cerebral circulation. Anesthesiology. 1998;88:1365–86.

    Article  Google Scholar 

  34. McCulloch TJ, Turner MJ. The effects of hypocapnia and the cerebral autoregulatory response on cerebrovascular resistance and apparent zero flow pressure during isoflurane anesthesia. Anesth Analg. 2009;108(4):1284–90.

    Article  Google Scholar 

  35. Ledsome JR, Cole C, Sharp-Kehl JM. Somatosensory evoked potentials during hypoxia and hypocapnia in conscious humans. Can J Anaesth. 1996;43(10):1025–9.

    Article  CAS  Google Scholar 

  36. Barry D. Cerebral blood flow in hypertension. J Cardiovasc Pharmacol. 1985;7(Suppl 2):S94–8.

    Article  Google Scholar 

  37. Domenick Sridharan N, Thirumala P, Chaer R, Balzer J, Long B, Crammond D, et al. Predictors of cross-clamp-induced intraoperative monitoring changes during carotid endarterectomy using both electroencephalography and somatosensory evoked potentials. J Vasc Surg. 2018;67(1):191–8.

    Article  Google Scholar 

  38. Alcantara SD, Wuamett JC, Lantis JC 2nd, Ulkatan S, Bamberger P, Mendes D, et al. Outcomes of combined somatosensory evoked potential, motor evoked potential, and electroencephalography monitoring during carotid endarterectomy. Ann Vasc Surg. 2014;28(3):665–72.

    Article  Google Scholar 

  39. Hitchon PW, Lobosky JM, Wilkinson TT, Yamada T, Torner JC, Gant PR. Direct spinal cord stimulation and recording in hemorrhagic shock. Neurosurgery. 1985;16(6):1985.

  40. Lieberman JA, Feiner J, Lyon R, Rollins MD. Effect of hemorrhage and hypotension on transcranial motor-evoked potentials in swine. Anesthesiology. 2013;119(5):1109–19.

  41. Weiskopf R, Aminoff M, Hopf H, Feiner J, Viele M, Watson J, et al. Acute isovolemic anemia does not impair peripheral or central nerve conduction. Anesthesiology. 2003;99(3):546–51.

  42. Trangmar SJ, Chiesa ST, Stock CG, Kalsi KK, Secher NH, González-Alonso J. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans. J Physiol. 2014;592(14):3143–60.

    Article  CAS  Google Scholar 

  43. Lips J, De Haan P, Bouma GJ, Holman R, Van Dongen E, Kalkman CJ. Continuous monitoring of cerebrospinal fluid oxygen tension in relation to motor evoked potentials during spinal cord ischemia in pigs. Anesthesiology. 2005;102(2):340–5.

  44. Cui H, Luk KDK, Hu Y. Effects of physiological parameters on intraoperative somatosensory-evoked potential monitoring: results of a multifactor analysis. Med Sci Monit Int Med J Exp Clin Res. 2009;15(5):CR226–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph N. Seubert.

Ethics declarations

Conflict of Interest

Ferenc Rabai, Basma Mohamed, and Christoph N. Seubert declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuroanesthesia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabai, F., Mohamed, B. & Seubert, C.N. Optimizing Intraoperative Neuromonitoring: Anesthetic Considerations. Curr Anesthesiol Rep 8, 306–317 (2018). https://doi.org/10.1007/s40140-018-0281-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-018-0281-6

Keywords

Navigation