Skip to main content
Log in

Residual Neuromuscular Blockade and Adverse Postoperative Outcomes: An Update

  • Neuromuscular Blockade (GS Murphy, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Residual weakness in our post-anesthesia-care-units (PACU) following the intra-operative administration of non-depolarizing neuromuscular blocking agents continues to be a frequent and usually unrecognized occurrence. If satisfactory recovery from these drugs is defined as a train-of-four ratio (TOF) of 0.90 or greater, probably not less than 30 % of patients fail to achieve this level of recovery upon arrival in the PACU. While most health young individuals will tolerate TOF values of 0.70 with no serious sequelae, this is not true of all patients. The elderly and patients with pre-existing conditions such as COPD, asthma, sleep apnea, obesity, and muscle or neurological disease may not be so fortunate. Anesthesia and surgery in the absence of muscle relaxant administration still cause major reductions in pulmonary reserve. The additional combination of residual block, and the contributing factors listed above are a recipe for post-op pulmonary complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kopman AF, Brull SJ. Is postoperative residual neuromuscular block associated with adverse clinical outcomes? What is the evidence? Curr Anesthesiol Rep. 2013;3:114–21.

    Article  Google Scholar 

  2. Farhan H, Moreno-Duarte I, McLean D, Eikermann M. Residual paralysis: does it influence outcome after ambulatory surgery? Curr Anesthesiol Rep. 2014;4:290–302.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Naguib M, Kopman AF, Lien CA, Hunter JM, Lopez A, Brull SJ. A survey of current neuromuscular practice in the United States and Europe. Anesth Analg. 2010;111:110–9.

    Article  PubMed  Google Scholar 

  4. Ali HH, Wilson RS, Savarese JJ, Kitz RJ. The effect of d-tubocurarine on indirectly elicited train-of-four muscle response and respiratory measurements in humans. Br J Anaesth. 1975;47:570–4.

    Article  CAS  PubMed  Google Scholar 

  5. Fuchs-Buder T, et al. Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: the Stockholm revision. Acta Anaesthesiol Scand. 2007;51:789–808.

    Article  CAS  PubMed  Google Scholar 

  6. Capron F, Alla F, Hottier C, Meistelman C, Fuchs-Buder T. Can acceleromyography detect low levels of residual paralysis?: a probability approach to detect a mechanomyographic train-of-four ratio of 0.9. Anesthesiology. 2004;100:1119–24.

    Article  PubMed  Google Scholar 

  7. Maybauer DM, Geldner G, Blobner M, Puhringer F, Hofmockel R, Rex C, Wulf HF, Eberhart L, Arndt C, Eikermann M. Incidence and duration of residual paralysis at the end of surgery after multiple administrations of cisatracurium and rocuronium. Anaesthesia. 2007;62:12–7.

    Article  CAS  PubMed  Google Scholar 

  8. Yip PC, Hannam JA, Cameron AJ, Campbell D. Incidence of residual neuromuscular blockade in a post-anaesthetic care unit. Anaesth Intensive Care. 2010;38:91–5.

    Article  CAS  PubMed  Google Scholar 

  9. Hayes AH, et al. Postoperative residual block after intermediate-acting neuromuscular blocking drugs. Anaesthesia. 2001;56:312–8.

    Article  CAS  PubMed  Google Scholar 

  10. •• Todd MM, Hindman BJ, King BJ. The implementation of quantitative electromyographic neuromuscular monitoring in an academic anesthesia department. Anesth Analg. 2014; 119:323–31. Since the introduction of department-wide quantitative neuromuscular blockade monitoring, the authors saw no PACU reintubations in appropriately monitored patients. However, use of EMG monitoring had a steep learning curve.

  11. •• Todd MM, Hindman BJ. The implementation of quantitative electromyographic neuromuscular monitoring in an academic anesthesia department: follow-up observations. Anesth Analg. 2015;121:837–40. Implementation of universal electromyographic-based quantitative neuromuscular blockade monitoring required a sustained process of education along with repeated PACU surveys and feedback to providers. Nevertheless, this effort resulted in a significant reduction in the incidence of incompletely reversed patients in the PACU.

  12. Baillard C, Clec’h C, Catineau J, Salhi F, Gehan G, Cupa M, Samara CM. Postoperative residual neuromuscular block: a survey of management. Br J Anaesth. 2005;95:622–6.

    Article  CAS  PubMed  Google Scholar 

  13. Sauer M, Stahn A, Soltesz S, Noeldge-Schomburg G, Mencke T. The influence of residual neuromuscular block on the incidence of critical respiratory events. A randomised, prospective, placebo-controlled trial. Eur J Anaesthesiol. 2011;28:842–8.

    Article  CAS  PubMed  Google Scholar 

  14. Berg H, Viby-Mogensen J, Roed J, Mortensen CR, Engbaek J, Skovgaard LT, Krintel JJ. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand. 1997;41:1095–103.

    Article  CAS  PubMed  Google Scholar 

  15. Murphy GS, Szokol JW, Marymount JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg. 2008;107:130–7.

    Article  PubMed  Google Scholar 

  16. Heier T, Caldwell JE, Feiner JR, John R, Liu L, Ward T, Wright PM. Relationship between normalized adductor pollicis train-of-four ratio and manifestations of residual neuromuscular block: a study using acceleromyography during near steady-state concentrations of mivacurium. Anesthesiology. 2010;113:825–32.

    Article  PubMed  Google Scholar 

  17. Fortier LP, McKeen D, Turner K, de Médicis É, Warriner B, Jones PM, Chaput A, Pouliot JF, Galarneau A. The RECITE study: a Canadian prospective, multicenter study of the incidence and severity of residual neuromuscular blockade. Anesth Analg. 2015;121:366–72.

    Article  PubMed  Google Scholar 

  18. • Norton M, Xará D, Parente D, Barbosa M, Abelha FJ. Residual neuromuscular block as a risk factor for critical respiratory events in post anesthesia care unit. Rev Esp Anestesiol Reanim. 2013; 60:190–6. More evidence (if any was needed) that residual neuromuscular block is a common occurrence in the PACU and is associated with untoward respiratory events.

  19. • Esteves S, Martins M, Barros F, Barros F, Canas M, Vitor P, Seabra M, Castro MM, Bastardo I. Incidence of postoperative residual neuromuscular blockade in the postanaesthesia care unit: an observational multicentre study in Portugal. Eur J Anaesthesiol. 2013;30:243–9. Even after reversal nondepolarizing blockers with neostigmine the authors report an incidence of PORB in their PACU of between 25–30 %.

  20. Pietraszewski P, Gasynski T. Residual neuromuscular block in elderly patients after surgical procedures under general anaesthesia with rocuronium. Anaesthesiol Intensive Ther. 2013;45:77–81.

    Article  PubMed  Google Scholar 

  21. •• Brueckmann B, Sasaki N, Grobara P, Li MK Woo T, de Bie J, Maktabi M, Lee J, Kwo J, Pino R, Sabouri AS, McGovern F, Staehr-Rye AK, Eikermann M. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade: a randomized, controlled study. Br J Anaesth. 2015;115:743–51. After abdominal surgery, sugammadex reversal eliminated residual neuromuscular blockade in the PACU, and shortened the time from start of study medication administration to the time the patient was ready for discharge from the operating room.

  22. Cammu GV, Smet V, De Jongh K, Vandeput D. A prospective, observational study comparing postoperative residual curarisation and early adverse respiratory events in patients reversed with neostigmine or sugammadex or after apparent spontaneous recovery. Anaesth Intensive Care. 2012;40:999–1006.

    Article  CAS  PubMed  Google Scholar 

  23. Kopman AF, Yee PS, Neuman GG. Correlation of the train-of-four fade ratio with clinical signs and symptoms of residual curarization in awake volunteers. Anesthesiology. 1997;86:765–71.

    Article  CAS  PubMed  Google Scholar 

  24. •• Kumar GV, Nair, AP, Murthy HS, Jalaja KR, Ramachandra K, Parameswara G. Residual neuromuscular blockade affects postoperative pulmonary function. Anesthesiology. 2012;117:1234–44. Even in health subjects vital capacity and peak expiratory flow as measures of respiratory reserve are diminished following surgery. These parameters are diminished further by residual neuromuscular block.

  25. Güldner A, Pelosi P, de Abreu MG. Nonventilatory strategies to prevent postoperative pulmonary complications. Curr Opin Anaesthesiol. 2013;26:141–51.

    Article  PubMed  Google Scholar 

  26. Brueckmann B, Villa-Uribe JL, Bateman BT, Grosse-Sundrup M, Hess DR, Schlett CL, Eikermann M. Development and validation of a score for prediction of postoperative respiratory complications. Anesthesiology. 2013;118:1276–85.

    Article  PubMed  Google Scholar 

  27. Grosse-Sundrup M, Henneman JP, Sandberg WS, Bateman BT, Uribe JV, Nguyen NT, Ehrenfeld JM, Martinez EA, Kurth T, Eikermann M. Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study. BMJ. 2012;345:e6329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meyer MJ, Bateman BT, Kurth T, Eikermann M. Neostigmine reversal doesn’t improve postoperative respiratory safety. BMJ. 2013;346:f1460.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sasaki N, Meyer MJ, Malviya SA, Stanislaus AB, MacDonald T, Doran ME, Igumenshcheva A, Hoang AH, Eikermann M. Effects of neostigmine reversal of nondepolarizing neuromuscular blocking agents on postoperative respiratory outcomes. A prospective study. Anesthesiology. 2014;121:959–68.

    Article  CAS  PubMed  Google Scholar 

  30. Herbstreit F, Zigrahan D, Ochterbeck C, Peters J, Eikermann M. Neostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2010;113:1280–8.

    Article  CAS  PubMed  Google Scholar 

  31. Payne JP, Hughes R, Al Azawi S. Neuromuscular blockade by neostigmine in anesthetized man. Br J Anaesth. 1980;52:69–76.

    Article  CAS  PubMed  Google Scholar 

  32. Goldhill DR, Wainwright AP, Stuart CS, Flynn PJ. Neostigmine after spontaneous recovery from neuromuscular blockade. Anaesthesia. 1989;44:293–9.

    Article  CAS  PubMed  Google Scholar 

  33. •• McLean DJ, Diaz-Gil D, Farhan HN, Ladha KS, Kurth T, Eikermann M. Dose-dependent association between intermediate-acting neuromuscular-blocking agents and postoperative respiratory complications. Anesthesiology. 2015;122:1201–13.

  34. • Baumüller E, Schaller SJ, Chiquito Lama Y, Frick CG, Bauhofer T, Eikermann M, Fink H, Blobner M. Postoperative impairment of motor function at train-of-four ratio ≥0.9 cannot be improved by sugammadex (1 mg kg−1). Br J Anaesth. 2015;114:785–93. Antagonizing rocuronium at TOF  0.9 with sugammadex did not improve patients’ motor function or well-being when compared with placebo. This data supports the view that a TOFR  0.9 measured by electromyography signifies sufficient clinical recovery of neuromuscular function.

  35. Sasaki N, Meyer MJ, Eikermann M. Postoperative respiratory muscle dysfunction: pathophysiology and preventive strategies. Anesthesiology. 2013;118:961–78.

    Article  PubMed  Google Scholar 

  36. • Piccioni F, Mariani L, Bogno L, Rivetti I, Tramontano GT, Carbonara M, Ammatuna M, Langer M. An acceleromyographic train-of-four ratio of 1.0 reliably excludes respiratory muscle weakness after major abdominal surgery: a randomized double-blind study. Canad J Anaesth. 2014;61:641–9. Major respiratory dysfunction is observed after abdominal surgery. However, at an acceleromyographic TOFR of 1.0 additional sugammadex at a dosage of 1 mg/kg does not appear to improve respiratory function.

  37. Kopman AF. Normalization of the acceleromyographic train-of-four fade ratio. Acta Anaesthesiol Scand. 2005;49:1575–6.

    Article  CAS  PubMed  Google Scholar 

  38. Kopman AF, Chin W, Cyriac J. Acceleromyography vs. electromyography: an ipsilateral comparison of the indirectly evoked neuromuscular response to train-of-four stimulation. Acta Anaesthesiol Scand. 2005;49:316–22.

    Article  CAS  PubMed  Google Scholar 

  39. •• Hårdemark Cedborg AI, Sundman E, Bodén K, Hedström HW, Kuylenstierna R, Ekberg O, Eriksson LI. Pharyngeal function and breathing pattern during partial neuromuscular block in the elderly: Effects on airway protection. Anesthesiology. 2014;120:312–5. Elderly individuals have impaired pharyngeal function. Incidence of swallowing dysfunction increased more than two times during partial neuromuscular block in healthy elderly individuals without impairment of coordination between swallowing and breathing. Reduced upper esophageal sphincter tone did not recover even at the train-of-four ratio of 0.9.

  40. Kirkegaard H, Heier T, Caldwell JE. Efficacy of tactile-guided reversal from cisatracurium induced neuromuscular block. Anesthesiology. 2002;96:45–50.

    Article  PubMed  Google Scholar 

  41. Kopman AF, Zank LM, Ng J, Neuman GG. Antagonism of cisatracurium and rocuronium bock at a tactile train-of-four count of 2: should quantitative assessment of neuromuscular function Be mandatory? Anesth Analg. 2004;98:102–6.

    Article  CAS  PubMed  Google Scholar 

  42. Kopman AF, Kopman DJ, Ng J, Zank LM. Antagonism of profound cisatracurium and rocuronium block: the role of objective assessment of neuromuscular function. J Clin Anesth. 2005;17:30–5.

    Article  CAS  PubMed  Google Scholar 

  43. Lemmens HJ, El-Orbany MI, Berry J, Morte JB Jr, Martin G. Reversal of profound vecuronium-induced neuromuscular block under sevoflurane anesthesia: sugammadex versus neostigmine. BMC Anesthesiol. 2010;10:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jones RK, Caldwell JE, Brull SJ, Soto RG. Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology. 2008;109:816–24.

    Article  CAS  PubMed  Google Scholar 

  45. • Kotake Y, et al. Reversal with sugammadex in the absence of monitoring did not preclude residual neuromuscular block. Anesth Analg. 2013;117:345–51. This study demonstrated that the risk of TOFR < 0.9 after tracheal extubation following sugammadex remains as high as 9 % in a clinical setting in which neuromuscular monitoring (objective or subjective) was not used. These finding underscore the importance of neuromuscular monitoring even when sugammadex is used for antagonism of rocuronium-induced neuromuscular block.

  46. Schaller SJ, Fink H. Sugammadex as a reversal agent for neuromuscular block: an evidence-based review. Core Evid. 2013;8:57–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. El-Orbany M, Ai H, Baraka A, Salem MR. Residual neuromuscular block should, and can, be a “Never Event”. Anesth Analg. 2014;118:691.

    Article  PubMed  Google Scholar 

  48. Green J, Butterworth J. “Never” events: anesthesiology’s dirty little secret. Anesth Analg. 2013;117:1–2.

    Article  PubMed  Google Scholar 

  49. de Locks GF, Cavalcanti IL, Duarte NM, da Cunha RM, de Almeida MC. Use of neuromuscular blockers in Brazil. Braz J Anesthesiol. 2015;65:319–25.

    Article  Google Scholar 

  50. Phillips S, Stewart PA, Bilgin AB. A survey of the management of neuromuscular blockade monitoring in Australia and New Zealand. Anaesth Intensive Care. 2013;41:374–9.

    Article  CAS  PubMed  Google Scholar 

  51. Kopman AF, Eikerman M. Antagonism of non-depolarising neuromuscular blockers: current practice. Anaesthesia. 2009;64(Suppl. 1):22–30.

    Article  CAS  PubMed  Google Scholar 

  52. Rodney G, Ball DR. Not just monitoring: a strategy for managing neuromuscular blockade. Anaesthesia. 2015;70:1105–18.

    Article  CAS  PubMed  Google Scholar 

  53. Kopman AF, Zank LM, Ng J, Neuman GG. Antagonism of cisatracurium and rocuronium bock at a tactile train-of-four count of 2: should quantitative assessment of neuromuscular function Be mandatory? Anesth Analg. 2004;98:102–6.

    Article  CAS  PubMed  Google Scholar 

  54. Brull SJ, Murphy GS. Residual neuromuscular block: lessons unlearned. Part II. Methods to reduce the risk of residual weakness. Anesth Analg. 2010;111:129–40.

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron F. Kopman.

Additional information

This article is part of the Topical Collection on Neuromuscular Blockade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopman, A.F. Residual Neuromuscular Blockade and Adverse Postoperative Outcomes: An Update. Curr Anesthesiol Rep 6, 178–184 (2016). https://doi.org/10.1007/s40140-016-0151-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-016-0151-z

Keywords

Navigation