Skip to main content

Advertisement

Log in

Efficiency in Microvascular Breast Reconstruction

  • Plastic Surgery (A. Mericli and M. Schaverien, Section Editors)
  • Published:
Current Surgery Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Efficiency in microsurgical breast reconstruction is becoming increasingly critical. With the increasing incidence of breast cancer diagnoses and the evolving landscape of healthcare, optimizing operative efficiency is imperative. This review explores various aspects of preoperative, intraoperative, and postoperative processes to enhance value and streamline care.

Recent Findings

Recent data reveal a shift toward autologous breast reconstruction over implant-based techniques, primarily due to better long-term outcomes and reduced risks. However, prolonged operative times have been a significant drawback. Various efficiency models, such as Process Mapping, 4 Disciplines of Execution (4DX), and Lean Six Sigma, have been adapted to microsurgical breast reconstruction with positive results. Additionally, patient selection, preoperative imaging, operative team coordination, and intraoperative techniques have been refined to improve efficiency. Enhanced Recovery After Surgery (ERAS) pathways have demonstrated benefits in postoperative recovery, reducing hospital stay, and enhancing patient-reported outcomes.

Summary

Efficiency in microsurgical breast reconstruction is paramount in delivering high-quality care while minimizing costs. By adopting innovative efficiency models and refining surgical processes, surgeons can optimize patient outcomes, reduce complications, and ensure the best esthetic results. In a healthcare environment emphasizing value-based care, prioritizing efficiency is essential for providing exceptional breast reconstruction services and improving the overall patient experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Cancer Society Medical and Editorial Team. Key statistics for breast cancer. New York: American Cancer Society; 2023.

    Google Scholar 

  2. Singh T, Goparaju L, Giladi AM, Aliu O, Song DH, Fan KL. Perspectives of women who forgo post-mastectomy breast reconstruction: a mixed methods analysis. Plast Reconstr Surg Glob Open. 2021. https://doi.org/10.1097/GOX.0000000000003203.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rep. Lance L Breast Cancer Patient Education Act of 2015

  4. Jagsi R, Jiang J, Momoh AO, Alderman A, Giordano SH, Buchholz TA, Kronowitz SJ, Smith BD. Trends and variation in use of breast reconstruction in patients with breast cancer undergoing mastectomy in the United States. J Clin Oncol. 2014;32:919–26.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Albornoz CR, Bach PB, Mehrara BJ, Disa JJ, Pusic AL, McCarthy CM, Cordeiro PG, Matros E. A paradigm shift in U.S. breast reconstruction: Increasing implant rates. Plast Reconstr Surg. 2013;131:15–23.

    Article  CAS  PubMed  Google Scholar 

  6. Masoomi H, Hanson SE, Clemens MW, Mericli AF. Autologous breast reconstruction trends in the United States: using the nationwide inpatient sample database. Ann Plast Surg. 2021;87:242–7.

    Article  CAS  PubMed  Google Scholar 

  7. Dempsey K, Mathieu E, Brennan M, et al. The role of breast reconstruction choice on body image patient-reported outcomes at four years post-mastectomy for breast cancer: a longitudinal prospective cohort study. Psychooncology. 2022;31:54–61.

    Article  PubMed  Google Scholar 

  8. Liu C, Zhuang Y, Momeni A, Luan J, Chung MT, Wright E, Lee GK. Quality of life and patient satisfaction after microsurgical abdominal flap versus staged expander/implant breast reconstruction: a critical study of unilateral immediate breast reconstruction using patient-reported outcomes instrument BREAST-Q. Breast Cancer Res Treat. 2014;146:117–26.

    Article  PubMed  Google Scholar 

  9. Metcalfe KA, Semple J, Quan ML, Vadaparampil ST, Holloway C, Brown M, Bower B, Sun P, Narod SA. Changes in psychosocial functioning 1 year after mastectomy alone, delayed breast reconstruction, or immediate breast reconstruction. Ann Surg Oncol. 2012;19:233–41.

    Article  PubMed  Google Scholar 

  10. Santosa KB, Qi J, Kim HM, Hamill JB, Wilkins EG, Pusic AL. Long-term patient-reported outcomes in postmastectomy breast reconstruction. JAMA Surg. 2018;153:891–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Retrouvey H, Kerrebijn I, Metcalfe KA, O’Neill AC, McCready DR, Hofer SOP, Zhong T. Psychosocial functioning in women with early breast cancer treated with breast surgery with or without immediate breast reconstruction. Ann Surg Oncol. 2019;26:2444–51.

    Article  PubMed  Google Scholar 

  12. Dempsey K, Mathieu E, Brennan M, et al. Patient-reported health-related quality of life outcomes following mastectomy for breast cancer, with immediate, delayed or no breast reconstruction: four-year follow-up from a prospective cohort study. Breast. 2023. https://doi.org/10.1016/J.BREAST.2023.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nelson JA, Shamsunder MG, Myers PL, et al. Matched preliminary analysis of patient-reported outcomes following autologous and implant-based breast reconstruction. Ann Surg Oncol. 2022;29:5266–75.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Polanco TO, Shamsunder MG, Parikh RP, et al. Quality of life in breast reconstruction patients after irradiation to tissue expander: a propensity-matched preliminary analysis. Plast Reconstr Surg. 2023. https://doi.org/10.1097/PRS.0000000000010249.

    Article  PubMed  Google Scholar 

  15. Gopie JP, Hilhorst MT, Kleijne A, Timman R, Menke-Pluymers MBE, Hofer SOP, Mureau MAM, Tibben A. Women’s motives to opt for either implant or DIEP-flap breast reconstruction. J Plast Reconstr Aesthet Surg. 2011;64:1062–7.

    Article  PubMed  Google Scholar 

  16. Nelson JA, Cordeiro PG, Polanco T, et al. Association of radiation timing with long-term satisfaction and health-related quality of life in prosthetic breast reconstruction. Plast Reconstr Surg. 2022;150:32E-41E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiu CS, Jordan SW, Dorfman RG, Vu MM, Alghoul MS, Kim JYS. Surgical duration impacts venous thromboembolism risk in microsurgical breast reconstruction. J Reconstr Microsurg. 2018;34:47–58.

    Article  PubMed  Google Scholar 

  18. Cheng H, Clymer JW, Po-Han Chen B, Sadeghirad PhDB, Ferko NC, Cameron CG, Hinoul P. Prolonged operative duration is associated with complications: a systematic review and meta-analysis. J Surg Res. 2018;229:134–44.

    Article  PubMed  Google Scholar 

  19. Allan J, Goltsman D, Moradi P, Ascherman JA. The effect of operative time on complication profile and length of hospital stay in autologous and implant-based breast reconstruction patients: an analysis of the 2007–2012 ACS-NSQIP database. J Plast Reconstr Aesthet Surg. 2020;73:1292–8.

    Article  PubMed  Google Scholar 

  20. Fogarty BJ, Khan K, Ashall G, Leonard AG. Complications of long operations: a prospective study of morbidity associated with prolonged operative time (> 6 h). Br J Plast Surg. 1999;52:33–6.

    Article  CAS  PubMed  Google Scholar 

  21. Elliott LF, Seify H, Bergey P. The 3-hour muscle-sparing free TRAM flap: safe and effective treatment review of 111 consecutive free TRAM flaps in a private practice setting. Plast Reconstr Surg. 2007;120:27–34.

    Article  CAS  PubMed  Google Scholar 

  22. Marsh D, Patel NG, Rozen WM, Chowdhry M, Sharma H, Ramakrishnan VV. Three routine free flaps per day in a single operating theatre: principles of a process mapping approach to improving surgical efficiency. Gland Surg. 2016;5:107–14.

    PubMed  PubMed Central  Google Scholar 

  23. Canizares O, Mayo J, Soto E, Allen RJ, Sadeghi A. Optimizing efficiency in deep inferior epigastric perforator flap breast reconstruction. Ann Plast Surg. 2015;75:186–92.

    Article  CAS  PubMed  Google Scholar 

  24. Haddock NT, Teotia SS. Efficient DIEP flap: bilateral breast reconstruction in less than four hours. Plast Reconstr Surg Glob Open. 2021. https://doi.org/10.1097/GOX.0000000000003801.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Porter ME. What is value in health care? New Engl J Med. 2010;363:2477–81.

    Article  CAS  PubMed  Google Scholar 

  26. Tsevat J, Moriates C. Value-based health care meets cost-effectiveness analysis. Ann Intern Med. 2018;169:329–32.

    Article  PubMed  Google Scholar 

  27. Teisberg E, Wallace S, O’Hara S. Defining and implementing value-based health care: a strategic framework. Acad Med. 2020;95:682–5.

    Article  PubMed  Google Scholar 

  28. Jones LK, Raphaelson M, Becker A, Kaloides A, Scharf E (2016) Neurology® clinical practice MACRA and the future of value-based care

  29. Squitieri L, Chung KC. Value-based payment reform and the medicare access and children’s health insurance program reauthorization act of 2015: a primer for plastic surgeons. Plast Reconstr Surg. 2017;140:205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McChesney C, Covey S, Huling J. The four disciplines of execution. New York: Simon & Schuster; 2012.

    Google Scholar 

  31. Easton J, Roberto A, Lax E, Reyna C, Dale E. Using a business model (the 4 disciplines of execution) to improve consistency, efficiency, and length of stay in microvascular autologous breast reconstruction. Ann Plast Surg. 2022;89:532–7.

    Article  CAS  PubMed  Google Scholar 

  32. Mason SE, Nicolay CR, Darzi A. The use of Lean and Six Sigma methodologies in surgery: a systematic review. The Surgeon. 2015;13:91–100.

    Article  CAS  PubMed  Google Scholar 

  33. Ohno T. Toyota production system: beyond large-scale production. New York: Productivity Press; 1988.

    Google Scholar 

  34. Stein MJ, Dec W, Lerman OZ. Lean and six sigma methodology can improve efficiency in microsurgical breast reconstruction. Plast Reconstr Surg Glob Open. 2021. https://doi.org/10.1097/GOX.0000000000003669.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hultman CS, Kim S, Lee CN, Wu C, Dodge B, Hultman CE, Tanner Roach S, Halvorson EG. Implementation and analysis of a lean six sigma program in microsurgery to improve operative throughput in perforator flap breast reconstruction. Ann Plast Surg. 2016;76(Suppl 4):S352–6.

    Article  CAS  PubMed  Google Scholar 

  36. Sharma HR, Rozen WM, Mathur B, Ramakrishnan V. 100 Steps of a DIEP flap—a prospective comparative cohort series demonstrating the successful implementation of process mapping in microsurgery. Plast Reconstr Surg Glob Open. 2019. https://doi.org/10.1097/GOX.0000000000002016.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Haddock NT, Teotia SS. Deconstructing the reconstruction: evaluation of process and efficiency in deep inferior epigastric perforator flaps. Plast Reconstr Surg. 2020;145:717e–24e.

    Article  CAS  PubMed  Google Scholar 

  38. Cho MJ, Haddock NT, Teotia SS. Clinical decision making using CTA in conjoined, bipedicled DIEP and SIEA for unilateral breast reconstruction. J Reconstr Microsurg. 2020;36:241–6.

    Article  PubMed  Google Scholar 

  39. Haddock NT, Dumestre DO, Teotia SS. Efficiency in DIEP flap breast reconstruction: The real benefit of computed tomographic angiography imaging. Plast Reconstr Surg. 2020;146:719–23.

    Article  CAS  PubMed  Google Scholar 

  40. Wade RG, Watford J, Wormald JCR, Bramhall RJ, Figus A. Perforator mapping reduces the operative time of DIEP flap breast reconstruction: a systematic review and meta-analysis of preoperative ultrasound, computed tomography and magnetic resonance angiography. J Plast Reconstruct Aesthet Surg. 2018;71:468–77.

    Article  Google Scholar 

  41. Vasile JV, Levine JL. Magnetic resonance angiography in perforator flap breast reconstruction. Gland Surg. 2016;5:197–211.

    PubMed  PubMed Central  Google Scholar 

  42. Thiessen FEF, Tondu T, Cloostermans B, Dirkx YAL, Auman D, Cox S, Verhoeven V, Hubens G, Steenackers G, Tjalma WAA. Dynamic InfraRed thermography (DIRT) in DIEP-flap breast reconstruction: a review of the literature. Eur J Obstet Gynecol Reprod Biol. 2019;242:47–55.

    Article  PubMed  Google Scholar 

  43. Nahabedian MY. The deep inferior epigastric perforator flap: where we started and where we are now. Gland Surg. 2023;12:696–703.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bauermeister AJ, Zuriarrain A, Newman M, Earle SA, Medina MA. Impact of continuous two-team approach in autologous breast reconstruction. J Reconstr Microsurg. 2017;33:298–304.

    Article  CAS  PubMed  Google Scholar 

  45. Weichman KE, Lam G, Wilson SC, Levine JP, Allen RJ, Karp NS, Choi M, Thanik VD. The impact of two operating surgeons on microsurgical breast reconstruction. Plast Reconstr Surg. 2017;139:277–84.

    Article  CAS  PubMed  Google Scholar 

  46. Haddock NT, Kayfan S, Pezeshk RA, Teotia SS. Co-surgeons in breast reconstructive microsurgery: what do they bring to the table? Microsurgery. 2018;38:14–20.

    Article  PubMed  Google Scholar 

  47. Speck NE, Dreier K, Fluetsch A, Babst D, Lardi AM, Farhadi J. Comparing complications and perioperative teams in microsurgical breast reconstruction: retrospective cohort study. Gland Surg. 2022;11:1754–63.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cevik J, Hunter-Smith DJ, Rozen WM. The importance of perioperative team familiarity and its contribution to surgical efficiency and outcomes in microsurgical breast reconstruction. Gland Surg. 2023;12:1–4.

    Article  PubMed  Google Scholar 

  49. Haddock NT, Teotia SS. Five steps to internal mammary vessel preparation in less than 15 minutes. Plast Reconstr Surg. 2017;140:884–6.

    Article  CAS  PubMed  Google Scholar 

  50. Malagón-López P, Vilà J, Carrasco-López C, García-Senosiain O, Priego D, Julian Ibañez JF, Higueras-Suñe C. Intraoperative indocyanine green angiography for fat necrosis reduction in the deep inferior epigastric perforator (DIEP) flap. Aesthet Surg J. 2019;39:NP45–54.

    Article  PubMed  Google Scholar 

  51. Malagón-López P, Carrasco-López C, García-Senosiain O, Vilà J, Del-Río M, Priego D, Julian-Ibáñez JF, Higueras-Suñe C. When to assess the DIEP flap perfusion by intraoperative indocyanine green angiography in breast reconstruction? Breast. 2019;47:102–8.

    Article  PubMed  Google Scholar 

  52. Ludolph I, Bettray D, Beier JP, Horch RE, Arkudas A. Leaving the perfusion zones? Individualized flap design in 100 free DIEP and ms-TRAM flaps for autologous breast reconstruction using indocyanine green angiography. J Plastic Reconstruct Aesthet Surg. 2022;75:52–60.

    Article  CAS  Google Scholar 

  53. Hembd AS, Yan J, Zhu H, Haddock NT, Teotia SS. Intraoperative assessment of DIEP flap breast reconstruction using indocyanine green angiography: reduction of fat necrosis, resection volumes, and postoperative surveillance. Plast Reconstr Surg. 2020. https://doi.org/10.1097/PRS.0000000000006888.

    Article  PubMed  Google Scholar 

  54. Martinez CA, Boutros SG. Outpatient microsurgical breast reconstruction. Plast Reconstr Surg Glob Open. 2020. https://doi.org/10.1097/GOX.0000000000003109.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tapp MW, Duet ML, Steele TN, Gallagher RJ, Kogan S, Calder BW, Robinson JM. Postoperative day 1 discharge in deep inferior epigastric artery perforator flap breast reconstruction. Plast Reconstr Surg Glob Open. 2023;11: e5064.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Martinez CA, Reis SM, Rednam R, Boutros SG. The outpatient diep: Safety and viability following a modified recovery protocol. Plast Reconstr Surg Glob Open. 2018;6: e1898.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Haddock NT, Garza R, Boyle CE, Liu Y, Teotia SS. Defining enhanced recovery pathway with or without liposomal bupivacaine in diep flap breast reconstruction. Plast Reconstr Surg. 2021;148:948–57.

    Article  CAS  PubMed  Google Scholar 

  58. Cano SJ, Klassen AF, Scott AM, Cordeiro PG, Pusic AL. The BREAST-Q: further validation in independent clinical samples. Plast Reconstr Surg. 2012;129:293–302.

    Article  CAS  PubMed  Google Scholar 

  59. Cohen WA, Mundy LR, Ballard TNS, Klassen A, Cano SJ, Browne J, Pusic AL. The BREAST-Q in surgical research: a review of the literature 2009–2015. J Plast Reconstruct Aesthet Surg. 2016;69:149–62.

    Article  Google Scholar 

  60. Haddock NT, Garza R, Boyle CE, Teotia SS. Observations from implementation of the ERAS protocol after DIEP flap breast reconstruction. J Reconstr Microsurg. 2022;38:506–10.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization and development of the article. TNS and NTH wrote the main manuscript text. SST assisted with image identification, generation, and editing.

Corresponding author

Correspondence to Nicholas T. Haddock.

Ethics declarations

Conflict of interest

The authors have no disclosures.

Human and Animal Rights and Informed Consent

No animal or human subjects were used by the authors in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steele, T.N., Teotia, S.S. & Haddock, N.T. Efficiency in Microvascular Breast Reconstruction. Curr Surg Rep 12, 89–96 (2024). https://doi.org/10.1007/s40137-024-00394-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40137-024-00394-z

Keywords

Navigation