Skip to main content

Advertisement

Log in

Current and Future Perspectives in Robotic Endovascular Surgery

  • Vascular Surgery (R. S. Crawford, Section Editor)
  • Published:
Current Surgery Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Endovascular robotic surgery remains a little known entity in the general medical community shrouded with misconception and intrigue. However, with continued evolution of robotic technology, it will inevitably become an integral part of the future vascular surgery practice.

Recent Findings

Receiving 501(k) clearance for use in peripheral vascular interventions from the US Food and Drug Administration in February 2018, the Corindus CorPath® GRX is the latest advancement in endovascular robotics. With seven motors controlled from a remote workstation, its ability to control guidewire and catheter motion with precise calculated movements confers favorable patient outcomes, while the inherent reduction in radiation exposure and ergonomic stress reduces occupational hazards for the surgeon. Nonetheless, the endovascular robotic transformation is not poised to stop there. Novel technological advances in shape memory alloys and fiber Bragg grating sensors have already set the stage for future endovascular robotic design.

Summary

Endovascular robotics remains on the cutting edge of surgical technology. Although further investigations are necessary to succinctly outline the indications and applications, the benefits and future potential are clear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Indes JE, Pfaff MJ, Farrokhyar F, Brown H, Hashim P, Cheung K, et al. Clinical outcomes of 5358 patients undergoing direct open bypass or endovascular treatment for aortoiliac occlusive disease: a systematic review and meta-analysis. J Endovasc Therapy. 2013;20(4):443–55. https://doi.org/10.1583/13-4242.1.

    Article  Google Scholar 

  2. Beaulieu RJ, Arnaoutakis KD, Abularrage CJ, Efron DT, Schneider E, Black JH 3rd. Comparison of open and endovascular treatment of acute mesenteric ischemia. J Vasc Surg. 2014;59(1):159–64. https://doi.org/10.1016/j.jvs.2013.06.084.

    Article  PubMed  Google Scholar 

  3. Ricotta JJ. Endovascular intravascular robotics: ready for prime time. Endovasc Today. 2015;14(8):77–80.

    Google Scholar 

  4. Campbell PT, Mahmud E, Marshall JJ. Interoperator and intraoperator (in)accuracy of stent selection based on visual estimation. Catheter Cardiovasc Interv. 2015;86(7):1177–83. https://doi.org/10.1002/ccd.25780.

    Article  PubMed  Google Scholar 

  5. Andreassi MG, Piccaluga E, Guagliumi G, Del Greco M, Gaita F, Picano E. Occupational health risks in cardiac catheterization laboratory workers. Circ Cardiovasc Interv. 2016;9(4):e003273. https://doi.org/10.1161/circinterventions.115.003273.

    Article  PubMed  Google Scholar 

  6. Klein LW, Tra Y, Garratt KN, Powell W, Lopez-Cruz G, Chambers C, et al. Occupational health hazards of interventional cardiologists in the current decade: results of the 2014 SCAI membership survey. Catheter Cardiovasc Interv. 2015;86(5):913–24. https://doi.org/10.1002/ccd.25927.

    Article  PubMed  Google Scholar 

  7. Roguin A, Goldstein J, Bar O, Goldstein JA. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013;111(9):1368–72. https://doi.org/10.1016/j.amjcard.2012.12.060.

    Article  PubMed  Google Scholar 

  8. Camarillo DB, Krummel TM, Salisbury JK Jr. Robotic technology in surgery: past, present, and future. Am J Surg. 2004;188(4A Suppl):2s–15s. https://doi.org/10.1016/j.amjsurg.2004.08.025.

    Article  PubMed  Google Scholar 

  9. Ruurda JP, van Vroonhoven TJMV, Broeders IAMJ. Robot-assisted surgical systems: a new era in laparoscopic surgery. Ann R Coll Surg Engl. 2002;84(4):223–6.

    Article  CAS  Google Scholar 

  10. Howe RD, Matsuoka Y. Robotics for surgery. Annu Rev Biomed Eng. 1999;1:211–40. https://doi.org/10.1146/annurev.bioeng.1.1.211.

    Article  CAS  PubMed  Google Scholar 

  11. Campbell PT, Kruse KR, Kroll CR, Patterson JY, Esposito MJ. The impact of precise robotic lesion length measurement on stent length selection: ramifications for stent savings. Cardiovasc Revasc Med. 2015;16(6):348–50. https://doi.org/10.1016/j.carrev.2015.06.005.

    Article  PubMed  Google Scholar 

  12. Bezerra HG, Mehanna E, Vetrovec GW, Costa AM, Weisz G. Longitudinal geographic miss (LGM) in robotic assisted versus manual percutaneous coronary interventions. J Interv Cardiol. 2015;28(5):449–55. https://doi.org/10.1111/joic.12231.

    Article  PubMed  Google Scholar 

  13. Smilowitz NR, Moses JW, Sosa FA, Lerman B, Qureshi Y, Dalton KE, et al. Robotic-enhanced PCI compared to the traditional manual approach. J Invasive Cardiol. 2014;26(7):318–21.

    PubMed  Google Scholar 

  14. Riga CV, Cheshire NJ, Hamady MS, Bicknell CD. The role of robotic endovascular catheters in fenestrated stent grafting. J Vasc Surg. 2010;51(4):810–9. https://doi.org/10.1016/j.jvs.2009.08.101 discussion 9–20.

    Article  PubMed  Google Scholar 

  15. Weisz G, Metzger DC, Caputo RP, Delgado JA, Marshall JJ, Vetrovec GW, et al. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) Study. J Am Coll Cardiol. 2013;61(15):1596–600. https://doi.org/10.1016/j.jacc.2012.12.045.

    Article  PubMed  Google Scholar 

  16. Granada JF, Delgado JA, Uribe MP, Fernandez A, Blanco G, Leon MB, et al. First-in-human evaluation of a novel robotic-assisted coronary angioplasty system. JACC Cardiovasc Interv. 2011;4(4):460–5. https://doi.org/10.1016/j.jcin.2010.12.007.

    Article  PubMed  Google Scholar 

  17. Štádler P, Dvořáček L, Vitásek P, Matouš P. Robot assisted aortic and non-aortic vascular operations. Eur J Vasc Endovasc Surg. 2016;52(1):22–8. https://doi.org/10.1016/j.ejvs.2016.02.016.

    Article  PubMed  Google Scholar 

  18. Makris MC, Moris D, Papalouca K, Malietzis G, Makris GC. The current status of robotic vascular surgery in the abdominal cavity. Int Angiol. 2016;35(1):1–7.

    PubMed  Google Scholar 

  19. Lin JC. The role of robotic surgical system in the management of vascular disease. Ann Vasc Surg. 2013;27(7):976–83. https://doi.org/10.1016/j.avsg.2013.02.004.

    Article  PubMed  Google Scholar 

  20. Wisselink W, Cuesta MA, Gracia C, Rauwerda JA. Robot-assisted laparoscopic aortobifemoral bypass for aortoiliac occlusive disease: a report of two cases. J Vasc Surg. 2002;36(5):1079–82.

    Article  Google Scholar 

  21. Saliba W, Cummings JE, Oh S, Zhang Y, Mazgalev TN, Schweikert RA, et al. Novel robotic catheter remote control system: feasibility and safety of transseptal puncture and endocardial catheter navigation. J Cardiovasc Electrophysiol. 2006;17(10):1102–5. https://doi.org/10.1111/j.1540-8167.2006.00556.x.

    Article  PubMed  Google Scholar 

  22. Riga C, Bicknell C, Cheshire N, Hamady M. Initial clinical application of a robotically steerable catheter system in endovascular aneurysm repair. J Endovasc Therapy. 2009;16(2):149–53. https://doi.org/10.1583/08-2651.1.

    Article  Google Scholar 

  23. Iyengar S, Gray WA. Use of magnetic guidewire navigation in the treatment of lower extremity peripheral vascular disease: report of the first human clinical experience. Catheter Cardiovasc Interv. 2009;73(6):739–44. https://doi.org/10.1002/ccd.21846.

    Article  PubMed  Google Scholar 

  24. • Mahmud E, Schmid F, Kalmar P, Deutschmann H, Hafner F, Rief P et al. Feasibility and safety of robotic peripheral vascular interventions: results of the RAPID Trial. JACC Cardiovasc Interv. 2016;9(19):2058–64. https://doi.org/10.1016/j.jcin.2016.07.002. Feasibility study that resulted in FDA approval of Corindus CorPath for peripheral vascular interventions.

    PubMed  Google Scholar 

  25. Caputo R, Lesser A, Simons A. Feasibility of robotic percutaneous renal artery revascularization. JACC Cardiovasc Interv. 2015;8(2 Supplement):S35.

    Article  Google Scholar 

  26. Duran C, Lumsden AB, Bismuth J. A randomized, controlled animal trial demonstrating the feasibility and safety of the Magellan™ endovascular robotic system. Ann Vasc Surg. 2014;28(2):470–8. https://doi.org/10.1016/j.avsg.2013.07.010.

    Article  PubMed  Google Scholar 

  27. Bismuth J, Kashef E, Cheshire N, Lumsden AB. Feasibility and safety of remote endovascular catheter navigation in a porcine model. J Endovasc Therapy. 2011;18(2):243–9. https://doi.org/10.1583/10-3324r.1.

    Article  Google Scholar 

  28. Cochennec F, Kobeiter H, Gohel M, Marzelle J, Desgranges P, Allaire E, et al. Feasibility and safety of renal and visceral target vessel cannulation using robotically steerable catheters during complex endovascular aortic procedures. J Endovasc Therapy. 2015;22(2):187–93. https://doi.org/10.1177/1526602815573228.

    Article  Google Scholar 

  29. Rafii-Tari H, Riga CV, Payne CJ, Hamady MS, Cheshire NJ, Bicknell CD, et al. Reducing contact forces in the arch and supra-aortic vessels using the Magellan robot. J Vasc Surg. 2016;64(5):1422–32. https://doi.org/10.1016/j.jvs.2015.06.215.

    Article  PubMed  Google Scholar 

  30. Riga CV, Bicknell CD, Hamady M, Cheshire N. Tortuous iliac systems—a significant burden to conventional cannulation in the visceral segment: is there a role for robotic catheter technology? J Vasc Interv Radiol. 2012;23(10):1369–75. https://doi.org/10.1016/j.jvir.2012.07.006.

    Article  PubMed  Google Scholar 

  31. Rao S. Robot-assisted transarterial chemoembolization for hepatocellular carcinoma: initial evaluation of safety, feasibility, success and outcomes using the Magellan system. J Vasc Interv Radiol. 2015;26(2):S12. https://doi.org/10.1016/j.jvir.2014.12.039.

    Article  Google Scholar 

  32. Weisz G. Robotic PCI technologies. Cardiac Interv Today. 2017;11(5):31–4.

    Google Scholar 

  33. Costa MA, Angiolillo DJ, Tannenbaum M, Driesman M, Chu A, Patterson J, et al. Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective STLLR trial). Am J Cardiol. 2008;101(12):1704–11. https://doi.org/10.1016/j.amjcard.2008.02.053.

    Article  CAS  PubMed  Google Scholar 

  34. Carrell T, Dastur N, Salter R, Taylor P. Use of a remotely steerable “robotic” catheter in a branched endovascular aortic graft. J Vasc Surg. 2012;55(1):223–5. https://doi.org/10.1016/j.jvs.2011.07.032.

    Article  PubMed  Google Scholar 

  35. Perera AH, Riga CV, Monzon L, Gibbs RG, Bicknell CD, Hamady M. Robotic Arch Catheter placement reduces cerebral embolization during thoracic endovascular aortic repair (TEVAR). Eur J Vasc Endovasc Surg. 2017;53(3):362–9. https://doi.org/10.1016/j.ejvs.2016.10.017.

    Article  CAS  PubMed  Google Scholar 

  36. • Couture T, Szewczyk J. Design and experimental validation of an active catheter for endovascular navigation. J Med Devices. 2017;12(1):011003–12. https://doi.org/10.1115/1.4038334. Outlines shape memory alloy catheter design and steerability of tip.

    Article  Google Scholar 

  37. •• Lu YH, Mani K, Panigrahi B, Hajari S, Chen CY. A shape memory alloy-based miniaturized actuator for catheter interventions. Cardiovasc Eng Technol. 2018;9(3):405–13. https://doi.org/10.1007/s13239-018-0369-7.demonstrates feasibility of shape memory alloy guidewires in vascular model.

  38. •• He C, Wang S, Zuo S. A linear stepping endovascular intervention robot with variable stiffness and force sensing. Int J Comput Assist Radiol Surg. 2018;13(5):671–82. https://doi.org/10.1007/s11548-018-1722-x. Demonstrates feasibility of robotic fiber Bragg grating force sensors in vascular model.

    Article  Google Scholar 

  39. Schwein A, Kramer B, Chinnadurai P, Virmani N, Walker S, O’Malley M, et al. Electromagnetic tracking of flexible robotic catheters enables “assisted navigation” and brings automation to endovascular navigation in an in vitro study. J Vasc Surg. 2018;67(4):1274–81. https://doi.org/10.1016/j.jvs.2017.01.072.

    Article  PubMed  Google Scholar 

  40. Zhang C, Guo S, Xiao N, Wu J, Li Y, Jiang Y. Transverse microvibrations-based guide wires drag reduction evaluation for endovascular interventional application. Biomed Microdevice. 2018;20(3):69. https://doi.org/10.1007/s10544-018-0315-3.

    Article  Google Scholar 

  41. Guo S, Wu J, Xiao N, Zhang C, Zhao Y, Li G et al., editors. A novel vibrating device for the interventional surgical Robotic System. 2017 IEEE International Conference on Mechatronics and Automation (ICMA); 2017 6–9 Aug. 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Ricotta II.

Ethics declarations

Conflict of interest

Ahmed K. Ghamraoui and Joseph J. Ricotta II declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Vascular Surgery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghamraoui, A.K., Ricotta, J.J. Current and Future Perspectives in Robotic Endovascular Surgery. Curr Surg Rep 6, 21 (2018). https://doi.org/10.1007/s40137-018-0218-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40137-018-0218-5

Keywords

Navigation