Skip to main content
Log in

Point-of-Care Imaging in Otolaryngology

  • REVIEW
  • Published:
Current Otorhinolaryngology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Point-of-care imaging (POCI) has been defined as, “an imaging test carried out at or close to the point-of-care, at the time and place of care delivery.” The American Academy of Otolaryngology – Head and Neck Surgery (AAO-HNS) strongly supports POCI to provide patients with timely and effective care. In this review, we demonstrate the value of POCI for all stakeholders including the patient, the otolaryngologist, and the healthcare system.

Recent Findings

In-office imaging has become more accessible to physician offices in recent years due to improved technology and reduced costs. Additionally, shifting imaging tests to physician offices is predicted to reduce healthcare spending in the United States. The history, cost-effectiveness, and usage options for POCI are important to consider. The primary modalities for POCI in otolaryngology include ultrasound (US), computed tomography (CT) imaging, and to a lesser extent, magnetic resonance imaging.

Summary

POCI has been largely embraced by clinicians and patients due to the ability to control access, timing, quality, and cost of imaging to improve patient experience and outcomes. In an era of value-based healthcare reform and price transparency, transitioning to lower-cost centers that are more affordable and accessible continues to drive demand (and preference) for POCI services, most commonly for US and CT imaging in otolaryngology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Frija G, Salama DH, Kawooya MG, Allen B. A paradigm shift in point-of-care imaging in low-income and middle-income countries. EClinicalMedicine. 2023;62:102114. https://doi.org/10.1016/j.eclinm.2023.102114. A review of point-of-care imaging uses including ultrasound, portable computed tomography, magnetic resonance imaging, and the of artificial intelligence software.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Position Statement: Point-of-Care Imaging in Otolaryngology. (2021). Retrieved date 27 Nov 2023, from https://www.entnet.org/resource/position-statement-point-of-care-imaging-in-otolaryngology/.

  3. Smith-Bindman R, et al. Trends in use of medical imaging in US Health Care Systems and in Ontario, Canada, 2000–2016. JAMA. 2019;322:843–56. https://doi.org/10.1001/jama.2019.11456.

    Article  PubMed  PubMed Central  Google Scholar 

  4. McCarthy M. US healthcare spending will reach 20% of GDP by 2024, says report. BMJ. 2015;351:h4204. https://doi.org/10.1136/bmj.h4204.

    Article  PubMed  Google Scholar 

  5. Papanicolas I, Woskie LR, Jha AK. Health care spending in the United States and other high-income countries. JAMA. 2018;319:1024–39. https://doi.org/10.1001/jama.2018.1150.

    Article  PubMed  Google Scholar 

  6. New Research Reveals Savings Opportunities for Diagnostic Imaging. (2020). Retrieved date 27 Nov 2023, from https://www.unitedhealthgroup.com/newsroom/research-reports/posts/new-research-reveals-savings-opportunities-for-diagnostic-imaging-471266.html#:~:text=High%20Cost%20of%20Diagnostic%20Imaging,imaging%20centers%20or%20physician%20offices.

  7. Gluckman JL, Mann W, Portugal LG, Welkoborsky HJ. Real-time ultrasonography in the otolaryngology office setting. Am J Otolaryngol. 1993;14:307–13. https://doi.org/10.1016/0196-0709(93)90088-o.

    Article  CAS  PubMed  Google Scholar 

  8. Moore CL, Copel JA. Point-of-care ultrasonography. N Engl J Med. 2011;364:749–57. https://doi.org/10.1056/NEJMra0909487.

    Article  CAS  PubMed  Google Scholar 

  9. Maw AM, Huebschmann AG, Mould-Millman NK, Dempsey AF, Soni NJ. Point-of-care ultrasound and modernization of the bedside assessment. J Grad Med Educ. 2020;12:661–5. https://doi.org/10.4300/jgme-d-20-00216.1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liao LJ, Wen MH, Yang TL. Point-of-care ultrasound in otolaryngology and head and neck surgery: a prospective survey study. J Formos Med Assoc. 2021;120:1547–53. https://doi.org/10.1016/j.jfma.2021.02.021.

    Article  PubMed  Google Scholar 

  11. Harb JL, Zaro C, Nassif SJ, Dhingra JK. Point-of-care ultrasound scan as the primary modality for evaluating parotid tumors. Laryngoscope Investig Otolaryngol. 2022;7:1402–6. https://doi.org/10.1002/lio2.887.

    Article  PubMed  PubMed Central  Google Scholar 

  12. • Shires CB, Boughter JD Jr, Smith A, Sebelik ME. Head and neck ultrasound utilization rates: 2012 to 2019. OTO Open. 2023;7:e97. https://doi.org/10.1002/oto2.97A comprehensive review of point-of-care ultrasound in the head and neck with recommended equipment and methods for various clinical situations.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Furukawa M, Hashimoto K, Kitani Y, Yoshida M. Point-of-care ultrasound in the head and neck region. J Med Ultrason. 2022;2001(49):593–600. https://doi.org/10.1007/s10396-022-01266-8.

    Article  Google Scholar 

  14. Pynnonen MA, et al. Clinical practice guideline: evaluation of the neck mass in adults. Otolaryngol Head Neck Surg. 2017;157:S1–s30. https://doi.org/10.1177/0194599817722550.

    Article  PubMed  Google Scholar 

  15. Feier J, Self Q, Karabachev A, Brundage W, Sajisevi M. Assessing the role of ultrasound for the evaluation of adult neck masses. Laryngoscope Investig Otolaryngol. 2023;8:135–9. https://doi.org/10.1002/lio2.995.

    Article  PubMed  Google Scholar 

  16. Horvath L, Kraft M. Evaluation of ultrasound and fine-needle aspiration in the assessment of head and neck lesions. Eur Arch Otorhinolaryngol. 2019;276:2903–11. https://doi.org/10.1007/s00405-019-05552-z.

    Article  PubMed  Google Scholar 

  17. Untch BR, et al. Surgeon-performed ultrasound is superior to 99Tc-sestamibi scanning to localize parathyroid adenomas in patients with primary hyperparathyroidism: results in 516 patients over 10 years. J Am Coll Surg. 2011;212:522–9. https://doi.org/10.1016/j.jamcollsurg.2010.12.038. discussion 529–531.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Abou Shaar B, Meteb M, Awad El-Karim G, Almalki Y. Reducing the number of unnecessary thyroid nodule biopsies with the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Cureus. 2022;14:e23118. https://doi.org/10.7759/cureus.23118.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hawkins SP, Jamieson SG, Coomarasamy CN, Low IC. The global epidemic of thyroid cancer overdiagnosis illustrated using 18 months of consecutive nodule biopsy correlating clinical priority, ACR-TIRADS and Bethesda scoring. J Med Imaging Radiat Oncol. 2021;65:309–16. https://doi.org/10.1111/1754-9485.13161.

    Article  PubMed  Google Scholar 

  20. Hamill C, Ellis PK, Johnston PC. Point of care thyroid ultrasound (POCUS) in endocrine outpatients: a pilot study. Ulster Med J. 2020;89:21–4.

    PubMed  PubMed Central  Google Scholar 

  21. Haugen BR, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133. https://doi.org/10.1089/thy.2015.0020.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Na DG, et al. Radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: consensus statement and recommendations. Korean J Radiol. 2012;13:117–25. https://doi.org/10.3348/kjr.2012.13.2.117.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ding J, Wang D, Zhang W, Xu D, Wang W. Ultrasound-guided radiofrequency and microwave ablation for the management of patients with benign thyroid nodules: systematic review and meta-analysis. Ultrasound Q. 2023;39:61–8. https://doi.org/10.1097/ruq.0000000000000636.

    Article  PubMed  Google Scholar 

  24. Kandil E, et al. Efficacy and safety of radiofrequency ablation of thyroid nodules: a multi-institutional prospective cohort study. Ann Surg. 2022;276:589–96. https://doi.org/10.1097/sla.0000000000005594.

    Article  PubMed  Google Scholar 

  25. Muhammad H, Santhanam P, Russell JO. Radiofrequency ablation and thyroid nodules: updated systematic review. Endocrine. 2021;72:619–32. https://doi.org/10.1007/s12020-020-02598-6.

    Article  CAS  PubMed  Google Scholar 

  26. Lim JY, Kuo JH. Thyroid nodule radiofrequency ablation: complications and clinical follow up. Tech Vasc Interv Radiol. 2022;25:100824. https://doi.org/10.1016/j.tvir.2022.100824.

    Article  PubMed  Google Scholar 

  27. Onkar PM, Ratnaparkhi C, Mitra K. High-frequency ultrasound in parotid gland disease. Ultrasound Q. 2013;29:313–21. https://doi.org/10.1097/RUQ.0b013e3182a0abe0.

    Article  PubMed  Google Scholar 

  28. Alyas F, et al. Diseases of the submandibular gland as demonstrated using high resolution ultrasound. Br J Radiol. 2005;78:362–9. https://doi.org/10.1259/bjr/93120352.

    Article  CAS  PubMed  Google Scholar 

  29. Afzelius P, Nielsen MY, Ewertsen C, Bloch KP. Imaging of the major salivary glands. Clin Physiol Funct Imaging. 2016;36:1–10. https://doi.org/10.1111/cpf.12199.

    Article  PubMed  Google Scholar 

  30. Ungari C, Paparo F, Colangeli W, Iannetti G. Parotid glands tumours: overview of a 10-year experience with 282 patients, focusing on 231 benign epithelial neoplasms. Eur Rev Med Pharmacol Sci. 2008;12:321–5.

    CAS  PubMed  Google Scholar 

  31. Harb JL, Bakar D, Dhingra JK. Diagnostic accuracy of fine-needle biopsy for salivary gland neoplasms in a community otolaryngology practice. OTO Open. 2020;4:2473974x20949184. https://doi.org/10.1177/2473974x20949184.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Reilly JS, Hotaling AJ, Chiponis D, Wald ER. Use of ultrasound in detection of sinus disease in children. Int J Pediatr Otorhinolaryngol. 1989;17:225–30. https://doi.org/10.1016/0165-5876(89)90049-9.

    Article  CAS  PubMed  Google Scholar 

  33. Druce HM. The use of ultrasound as an imaging technique in the diagnosis of sinusitis. N Engl Reg Allergy Proc. 1988;9:109–12. https://doi.org/10.2500/108854188778994995.

    Article  CAS  PubMed  Google Scholar 

  34. Varonen H, Mäkelä M, Savolainen S, Läärä E, Hilden J. Comparison of ultrasound, radiography, and clinical examination in the diagnosis of acute maxillary sinusitis: a systematic review. J Clin Epidemiol. 2000;53:940–8. https://doi.org/10.1016/s0895-4356(99)00213-9.

    Article  CAS  PubMed  Google Scholar 

  35. Hsu CC, Sheng C, Ho CY. Efficacy of sinus ultrasound in diagnosis of acute and subacute maxillary sinusitis. J Chin Med Assoc. 2018;81:898–904. https://doi.org/10.1016/j.jcma.2018.03.005.

    Article  PubMed  Google Scholar 

  36. O’Rourke K, Kibbee N, Stubbs A. Ultrasound for the evaluation of skin and soft tissue infections. Mo Med. 2015;112:202–5.

    PubMed  PubMed Central  Google Scholar 

  37. Beam G, Check R, Denne N, Minardi J, End B. Point-of-care ultrasound findings in a case of orbital cellulitis: a case report. J Emerg Med. 2021;61:157–60. https://doi.org/10.1016/j.jemermed.2021.03.033.

    Article  PubMed  Google Scholar 

  38. Acuña J, Shockey D, Adhikari S. The use of point-of-care ultrasound in the diagnosis of Pott’s puffy tumor: a case report. Clin Pract Cases Emerg Med. 2021;5:422–4. https://doi.org/10.5811/cpcem.2021.6.52726.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang LM, et al. Value of ultrasonography in diagnosis of pediatric vocal fold paralysis. Int J Pediatr Otorhinolaryngol. 2011;75:1186–90. https://doi.org/10.1016/j.ijporl.2011.06.017.

    Article  CAS  PubMed  Google Scholar 

  40. Deshpande A, et al. The utility of handheld ultrasound as a point-of-care screening tool to assess vocal fold impairment following congenital heart surgery. Int J Pediatr Otorhinolaryngol. 2021;148:110825. https://doi.org/10.1016/j.ijporl.2021.110825.

    Article  PubMed  Google Scholar 

  41. Zhang WQ, Lambert EM, Ongkasuwan J. Point of care, clinician-performed laryngeal ultrasound and pediatric vocal fold movement impairment. Int J Pediatr Otorhinolaryngol. 2020;129:109773. https://doi.org/10.1016/j.ijporl.2019.109773.

    Article  PubMed  Google Scholar 

  42. Su E, et al. Laryngeal ultrasound detects vocal fold immobility in adults: a systematic review. J Ultrasound Med. 2022;41:1873–88. https://doi.org/10.1002/jum.15884.

    Article  PubMed  Google Scholar 

  43. Eliason MJ, Wang AS, Lim J, Beegle RD, Seidman MD. Are computed tomography scans necessary for the diagnosis of peritonsillar abscess? Cureus. 2023;15:e34820. https://doi.org/10.7759/cureus.34820.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Costantino TG, Satz WA, Dehnkamp W, Goett H. Randomized trial comparing intraoral ultrasound to landmark-based needle aspiration in patients with suspected peritonsillar abscess. Acad Emerg Med. 2012;19:626–31. https://doi.org/10.1111/j.1553-2712.2012.01380.x.

    Article  PubMed  Google Scholar 

  45. Gibbons RC, Costantino TG. Evidence-based medicine improves the emergent management of peritonsillar abscesses using point-of-care ultrasound. J Emerg Med. 2020;59:693–8. https://doi.org/10.1016/j.jemermed.2020.06.030.

    Article  PubMed  Google Scholar 

  46. Simard RD, Socransky S, Chenkin J. Transoral point-of-care ultrasound in the diagnosis of parapharyngeal space abscess. J Emerg Med. 2019;56:70–3. https://doi.org/10.1016/j.jemermed.2018.09.034.

    Article  PubMed  Google Scholar 

  47. Margalit I, Berant R. Point-of-care ultrasound to diagnose a simple ranula. West J Emerg Med. 2016;17:827–8. https://doi.org/10.5811/westjem.2016.9.30890.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zollinger R. Psychotherapy with a boy with depression following the death of his 2 brothers. Prax Kinderpsychol Kinderpsychiatr. 1997;46:727–31.

    CAS  PubMed  Google Scholar 

  49. Bhattacharyya N. Trends in otolaryngologic utilization of computed tomography for sinonasal disorders. Laryngoscope. 2013;123:1837–9. https://doi.org/10.1002/lary.24001.

    Article  PubMed  Google Scholar 

  50. • Batra PS, Setzen M, Li Y, Han JK, Setzen G. Computed tomography imaging practice patterns in adult chronic rhinosinusitis: survey of the American Academy of Otolaryngology-Head and Neck Surgery and American Rhinologic Society membership. Int Forum Allergy Rhinol. 2015;5:506–12. https://doi.org/10.1002/alr.21483. A retrospective study evaluating Medicare billing trends for in-office computerized tomography among otolaryngologists.

    Article  PubMed  Google Scholar 

  51. Patel RA, Torabi SJ, Kasle DA, Narwani V, Manes RP. Billing patterns for in-office computerized tomography scans of the face/sinus by otolaryngologists. Am J Otolaryngol. 2021;42:103140. https://doi.org/10.1016/j.amjoto.2021.103140.

    Article  PubMed  Google Scholar 

  52. Woolen S, et al. Waiting for radiology test results: patient expectations and emotional disutility. J Am Coll Radiol. 2018;15:274–81. https://doi.org/10.1016/j.jacr.2017.09.017.

    Article  PubMed  Google Scholar 

  53. Blackwell DL, Lucas JW, Clarke TC. Summary health statistics for U.S. adults: national health interview survey, 2012. Vital Health Stat. 2014;10:1–161.

    Google Scholar 

  54. Setzen G, et al. Clinical consensus statement: appropriate use of computed tomography for paranasal sinus disease. Otolaryngol Head Neck Surg. 2012;147:808–16. https://doi.org/10.1177/0194599812463848.

    Article  PubMed  Google Scholar 

  55. Rosenfeld RM, et al. Clinical practice guideline (update): adult sinusitis. Otolaryngol Head Neck Surg. 2015;152:S1–s39. https://doi.org/10.1177/0194599815572097.

    Article  PubMed  Google Scholar 

  56. Tan BK, Chandra RK, Conley DB, Tudor RS, Kern RC. A randomized trial examining the effect of pretreatment point-of-care computed tomography imaging on the management of patients with chronic rhinosinusitis symptoms. Int Forum Allergy Rhinol. 2011;1:229–34. https://doi.org/10.1002/alr.20044.

    Article  PubMed  Google Scholar 

  57. Leung R, et al. Upfront computed tomography scanning is more cost-beneficial than empiric medical therapy in the initial management of chronic rhinosinusitis. Int Forum Allergy Rhinol. 2011;1:471–80. https://doi.org/10.1002/alr.20084.

    Article  PubMed  Google Scholar 

  58. Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 2: clinical applications. AJNR Am J Neuroradiol. 2009;30:1285–92. https://doi.org/10.3174/ajnr.A1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leung R, Chaung K, Kelly JL, Chandra RK. Advancements in computed tomography management of chronic rhinosinusitis. Am J Rhinol Allergy. 2011;25:299–302. https://doi.org/10.2500/ajra.2011.25.3641.

    Article  PubMed  Google Scholar 

  60. Albu S. Chronic rhinosinusitis-an update on epidemiology, pathogenesis and management. J Clin Med. 2020. https://doi.org/10.3390/jcm9072285.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rudmik L. Economics of chronic rhinosinusitis. Curr Allergy Asthma Rep. 2017;17:20. https://doi.org/10.1007/s11882-017-0690-5.

    Article  PubMed  Google Scholar 

  62. Truitt KN, Brown T, Lee JY, Linder JA. Appropriateness of antibiotic prescribing for acute sinusitis in primary care: a cross-sectional study. Clin Infect Dis. 2021;72:311–4. https://doi.org/10.1093/cid/ciaa736.

    Article  PubMed  Google Scholar 

  63. Han M, Kim HJ, Choi JW, Park DY, Han JG. Diagnostic usefulness of cone-beam computed tomography versus multi-detector computed tomography for sinonasal structure evaluation. Laryngoscope Investig Otolaryngol. 2022;7:662–70. https://doi.org/10.1002/lio2.792.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Alam-Eldeen MH, Rashad UM, Ali AHA. Radiological requirements for surgical planning in cochlear implant candidates. Indian J Radiol Imaging. 2017;27:274–81. https://doi.org/10.4103/ijri.IJRI_55_17.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nateghifard K, et al. Cone beam CT for perioperative imaging in hearing preservation cochlear implantation - a human cadaveric study. J Otolaryngol Head Neck Surg. 2019;48:65. https://doi.org/10.1186/s40463-019-0388-x.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wu Q, et al. Advances in image-based artificial intelligence in Otorhinolaryngology-Head And Neck Surgery: a systematic review. Otolaryngol Head Neck Surg. 2023;169:1132–42. https://doi.org/10.1002/ohn.391.

    Article  PubMed  Google Scholar 

  67. Massey CJ, Asokan A, Tietbohl C, Morris M, Ramakrishnan VR. Otolaryngologist perceptions of AI-based sinus CT interpretation. Am J Otolaryngol. 2023;44:103932. https://doi.org/10.1016/j.amjoto.2023.103932.

    Article  PubMed  Google Scholar 

  68. Majid Khan JS, James Zinreich S, Nafi Aygun. Cummings Otolaryngology-Head and Neck Surgery. 7th ed. 2021.

  69. Levin DC, Rao VM, Parker L, Frangos AJ, Sunshine JH. Ownership or leasing of MRI facilities by nonradiologist physicians is a rapidly growing trend. J Am Coll Radiol. 2008;5:105–9. https://doi.org/10.1016/j.jacr.2007.09.017.

    Article  PubMed  Google Scholar 

  70. Islam KT, et al. Improving portable low-field MRI image quality through image-to-image translation using paired low- and high-field images. Sci Rep. 2023;13:21183. https://doi.org/10.1038/s41598-023-48438-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JP wrote the main manuscript text including the “Abstract,” “Introduction,” “Ultrasound,” and “Magnetic Resonance Imaging” sections. JP also reviewed and collaborated on the “Computed Tomography” section. SS and GS wrote the main text within the “Computed Tomography” section. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jaclyn Preece.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preece, J., Setzen, S.A. & Setzen, G. Point-of-Care Imaging in Otolaryngology. Curr Otorhinolaryngol Rep (2024). https://doi.org/10.1007/s40136-024-00499-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40136-024-00499-0

Keywords

Navigation