Skip to main content

Advertisement

Log in

A Primer on Hypotussic Cough: Mechanisms and Assessment

  • LARYNGOLOGY: UPDATE ON DYSPHAGIA (H STARMER AND A RAMEAU, SECTION EDITORS)
  • Published:
Current Otorhinolaryngology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This narrative review introduces key elements of cough neural control, function, dysfunction, and measurement for physicians and speech-language pathologists. Its goal is to guide integrated approaches to the assessment of cough and facilitate differential diagnosis of cough dysfunction among people with dysphagia.

Recent Findings

Research has shown that cough and swallow dysfunction have high co-occurrence, especially in neurodegenerative populations. Both sensory and motor components of cough dysfunction can be evaluated using high and low-tech equipment (e.g., handheld peak flow meters). The evaluation of cough function is vital given the known benefit of targeted dystussia treatments for people with dysphagia.

Summary

Intact airway protection requires both functional swallowing and cough. However, clinicians report that objective cough evaluations are not commonly included in assessments of airway protection. This review provides an overview of cough neurobiology, describes its measurement, and presents case vignettes to illustrate the benefits of integrating cough assessments into clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Troche MS, Brandimore AE, Godoy J, Hegland KW. A framework for understanding shared substrates of airway protection. J Appl Oral Sci. 2014;22:251–60. https://doi.org/10.1590/1678-775720140132.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Addington WR, Stephens RE, Gilliland K, Rodriguez M. Assessing the laryngeal cough reflex and the risk of developing pneumonia after stroke. Arch Phys Med Rehabil. 1999;80:150–4. https://doi.org/10.1016/S0003-9993(99)90112-0.

    Article  CAS  PubMed  Google Scholar 

  3. Nakamori M, Imamura E, Kuwabara M, Ayukawa T, Tachiyama K, Kamimura T, et al. Simplified cough test can predict the risk for pneumonia in patients with acute stroke. PLoS ONE. 2020;15:e0239590. https://doi.org/10.1371/journal.pone.0239590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Niimi A, Matsumoto H, Ueda T, Takemura M, Suzuki K, Tanaka E, et al. Impaired cough reflex in patients with recurrent pneumonia. Thorax. 2003;58:152–3. https://doi.org/10.1136/thorax.58.2.152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sancho J, Servera E, Díaz J, Marín J. Predictors of ineffective cough during a chest infection in patients with stable amyotrophic lateral sclerosis. Am J Respir Crit Care Med. 2007;175:1266–71. https://doi.org/10.1164/rccm.200612-1841OC.

    Article  PubMed  Google Scholar 

  6. Smith Hammond CA, Goldstein LB, Horner RD, Ying J, Gray L, Gonzalez-Rothi L, et al. Predicting aspiration in patients with ischemic stroke: comparison of clinical signs and aerodynamic measures of voluntary cough. Chest. 2009;135:769–77. https://doi.org/10.1378/chest.08-1122.

    Article  PubMed  Google Scholar 

  7. Semenov YR, Starmer HM, Gourin CG. The effect of pneumonia on short-term outcomes and cost of care after head and neck cancer surgery. Laryngoscope. 2012;122:1994–2004. https://doi.org/10.1002/lary.23446.

    Article  PubMed  Google Scholar 

  8. Ottosson S, Lindblom U, Wahlberg P, Nilsson P, Kjellén E, Zackrisson B, et al. Weight loss and body mass index in relation to aspiration in patients treated for head and neck cancer: a long-term follow-up. Support Care Cancer. 2014;22:2361–9. https://doi.org/10.1007/s00520-014-2211-6.

    Article  PubMed  Google Scholar 

  9. Langmore SE, Terpenning MS, Schork A, Chen Y, Murray JT, Lopatin D, et al. Predictors of aspiration pneumonia: how important is dysphagia? Dysphagia. 1998;13:69–81. https://doi.org/10.1007/PL00009559.

    Article  CAS  PubMed  Google Scholar 

  10. Loeb M, McGeer A, McArthur M, Walter S, Simor AE. Risk factors for pneumonia and other lower respiratory tract infections in elderly residents of long-term care facilities. Arch Intern Med. 1999;159:2058–64. https://doi.org/10.1001/archinte.159.17.2058.

    Article  CAS  PubMed  Google Scholar 

  11. Allen J, Greene M, Sabido I, Stretton M, Miles A. Economic costs of dysphagia among hospitalized patients. Laryngoscope. 2020;130:974–9. https://doi.org/10.1002/lary.28194.

    Article  PubMed  Google Scholar 

  12. D’Amelio M, Ragonese P, Morgante L, Reggio A, Callari G, Salemi G, et al. Long–term survival of Parkinson’s disease. J Neurol. 2006;253:33–7. https://doi.org/10.1007/s00415-005-0916-7.

    Article  PubMed  Google Scholar 

  13. Fernandez HH, Lapane KL. Predictors of mortality among nursing home residents with a diagnosis of Parkinson’s disease. Med Sci Monit. 2002;8:CR241-6.

    PubMed  Google Scholar 

  14. Akbar U, Dham B, He Y, Hack N, Wu S, Troche M, et al. Incidence and mortality trends of aspiration pneumonia in Parkinson’s disease in the United States, 1979–2010. Parkinsonism Relat Disord. 2015;21:1082–6. https://doi.org/10.1016/j.parkreldis.2015.06.020.

    Article  PubMed  Google Scholar 

  15. Manabe T, Teramoto S, Tamiya N, Okochi J, Hizawa N. Risk factors for aspiration pneumonia in older adults. PLoS ONE. 2015;10:e0140060. https://doi.org/10.1371/journal.pone.0140060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marik PE, Kaplan D. Aspiration pneumonia and dysphagia in the elderly. Chest. 2003;124:328–36. https://doi.org/10.1378/chest.124.1.328.

    Article  PubMed  Google Scholar 

  17. Nguyen NP, Frank C, Moltz CC, Vos P, Smith HJ, Bhamidipati PV, et al. Aspiration rate following chemoradiation for head and neck cancer: an underreported occurrence. Radiother Oncol. 2006;80:302–6. https://doi.org/10.1016/j.radonc.2006.07.031.

    Article  PubMed  Google Scholar 

  18. Pikus L, Levine MS, Yang Y-X, Rubesin SE, Katzka DA, Laufer I, et al. Videofluoroscopic studies of swallowing dysfunction and the relative risk of pneumonia. Am J Roentgenol. 2003;180:1613–6. https://doi.org/10.2214/ajr.180.6.1801613.

    Article  Google Scholar 

  19. van der Maarel-Wierink CD, Vanobbergen JNO, Bronkhorst EM, Schols JMGA, de Baat C. Meta-analysis of dysphagia and aspiration pneumonia in frail elders. J Dent Res. 2011;90:1398–404. https://doi.org/10.1177/0022034511422909.

    Article  PubMed  Google Scholar 

  20. Troche MS, Brandimore AE, Okun MS, Davenport PW, Hegland KW. Decreased cough sensitivity and aspiration in Parkinson disease. Chest. 2014;146:1294–9. https://doi.org/10.1378/chest.14-0066.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hammond CAS, Goldstein LB, Zajac DJ, Gray L, Davenport PW, Bolser DC. Assessment of aspiration risk in stroke patients with quantification of voluntary cough. Neurology. 2001;56:502–6. https://doi.org/10.1212/WNL.56.4.502.

    Article  Google Scholar 

  22. Silverman EP, Carnaby-Mann G, Pitts T, Davenport P, Okun MS, Sapienza C. Concordance and discriminatory power of cough measurement devices for individuals with Parkinson disease. Chest. 2014;145:1089–96. https://doi.org/10.1378/chest.13-0596.

    Article  PubMed  Google Scholar 

  23. Sohn D, Park G-Y, Koo H, Jang Y, Han Y, Im S. Determining peak cough flow cutoff values to predict aspiration pneumonia among patients with dysphagia using the citric acid reflexive cough test. Arch Phys Med Rehabil. 2018;99:2532-2539.e1. https://doi.org/10.1016/j.apmr.2018.06.015.

    Article  PubMed  Google Scholar 

  24. Bianchi C, Baiardi P, Khirani S, Cantarella G. Cough peak flow as a predictor of pulmonary morbidity in patients with dysphagia. Am J Phys Med Rehabil. 2012;91:783–8. https://doi.org/10.1097/PHM.0b013e3182556701.

    Article  PubMed  Google Scholar 

  25. Hutcheson KA, Barrow MP, Warneke CL, Wang Y, Eapen G, Lai SY, et al. Cough strength and expiratory force in aspirating and nonaspirating postradiation head and neck cancer survivors. Laryngoscope. 2018;128:1615–21. https://doi.org/10.1002/lary.26986.

    Article  PubMed  Google Scholar 

  26. Serra-Prat M, Palomera M, Gomez C, Sar-Shalom D, Saiz A, Montoya JG, et al. Oropharyngeal dysphagia as a risk factor for malnutrition and lower respiratory tract infection in independently living older persons: a population-based prospective study. Age Ageing. 2012;41:376–81. https://doi.org/10.1093/ageing/afs006.

    Article  PubMed  Google Scholar 

  27. Roy N, Stemple J, Merrill RM, Thomas L. Dysphagia in the elderly: preliminary evidence of prevalence, risk factors, and socioemotional effects. Ann Otol Rhinol Laryngol. 2007;116:858–65. https://doi.org/10.1177/000348940711601112.

    Article  PubMed  Google Scholar 

  28. Eslick GD, Talley NJ. Dysphagia: epidemiology, risk factors and impact on quality of life – a population-based study. Aliment Pharmacol Ther. 2008;27:971–9. https://doi.org/10.1111/j.1365-2036.2008.03664.x.

    Article  CAS  PubMed  Google Scholar 

  29. • Mir MJ, Wheeler HK. A survey of speech-language pathologists’ experience with clinical cough assessment. Perspect ASHA Spec Interest Groups. 2021;6:1627–40. https://doi.org/10.1044/2021_PERSP-21-00144. A survey of SLPs and SLP students on how cough assessments are implemented in clinical settings, and to assess interest in additional cough assessment training.

    Article  PubMed  PubMed Central  Google Scholar 

  30. • Borders JC, Troche MS. Voluntary cough effectiveness and airway clearance in neurodegenerative disease. J Speech Lang Hear Res. 2022;65:431–49. https://doi.org/10.1044/2021_JSLHR-21-00308. A retrospective analysis of measures of cough airflow and degree of airway clearance in individuals with neurodegenerative conditions.

    Article  PubMed  Google Scholar 

  31. Plowman EK, Watts SA, Robison R, Tabor L, Dion C, Gaziano J, et al. Voluntary cough airflow differentiates safe versus unsafe swallowing in amyotrophic lateral sclerosis. Dysphagia. 2016;31:383–90. https://doi.org/10.1007/s00455-015-9687-1.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pitts T, Troche M, Mann G, Rosenbek J, Okun MS, Sapienza C. Using voluntary cough to detect penetration and aspiration during oropharyngeal swallowing in patients with Parkinson disease. Chest. 2010;138:1426–31. https://doi.org/10.1378/chest.10-0342.

    Article  PubMed  Google Scholar 

  33. Hegland KW, Bolser DC, Davenport PW. Volitional control of reflex cough. J Appl Physiol. 2012;113:39–46. https://doi.org/10.1152/japplphysiol.01299.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davenport PW. Clinical cough i: the urge-to-cough: a respiratory sensation. In: Chung KF, Widdicombe J, editors. Pharmacol. Ther. Cough Berlin, Heidelberg: Springer; 2009. p. 263–76.

  35. Davenport PW. Urge-to-cough: what can it teach us about cough? Lung. 2008;186:107–11. https://doi.org/10.1007/s00408-007-9045-7.

    Article  Google Scholar 

  36. Hutchings HA, Morris S, Eccles R, Jawad MSM. Voluntary suppression of cough induced by inhalation of capsaicin in healthy volunteers. Respir Med. 1993;87:379–82. https://doi.org/10.1016/0954-6111(93)90052-2.

    Article  CAS  PubMed  Google Scholar 

  37. Perry SE, Troche MS. Dual tasking influences cough sensorimotor outcomes in healthy young adults. J Speech Lang Hear Res JSLHR. 2019;62:3596–606. https://doi.org/10.1044/2019_JSLHR-H-19-0122.

    Article  PubMed  Google Scholar 

  38. Canning BJ. Afferent nerves regulating the cough reflex: mechanisms and mediators of cough in disease. Otolaryngol Clin North Am. 2010;43(15–25):vii. https://doi.org/10.1016/j.otc.2009.11.012.

    Article  PubMed  Google Scholar 

  39. Holzer P. Acid-sensitive ion channels and receptors. In: Canning BJ, Spina D, editors. Sens. Nerves Berlin, Heidelberg: Springer; 2009. p. 283–332.

    Google Scholar 

  40. Ho C-Y, Gu Q, Lin YS, Lee L-Y. Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol. 2001;127:113–24. https://doi.org/10.1016/S0034-5687(01)00241-9.

    Article  CAS  PubMed  Google Scholar 

  41. Mazzone SB, Farrell MJ. Heterogeneity of cough neurobiology: clinical implications. Pulm Pharmacol Ther. 2019;55:62–6. https://doi.org/10.1016/j.pupt.2019.02.002.

    Article  CAS  PubMed  Google Scholar 

  42. Shannon R, Baekey DM, Morris KF, Nuding SC, Segers LS, Lindsey BG. Production of reflex cough by brainstem respiratory networks. Pulm Pharmacol Ther. 2004;17:369–76. https://doi.org/10.1016/j.pupt.2004.09.022.

    Article  CAS  PubMed  Google Scholar 

  43. Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR. Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol. 2006;101:618–27. https://doi.org/10.1152/japplphysiol.00252.2006.

    Article  PubMed  Google Scholar 

  44. Fontana GA, Lavorini F. Cough motor mechanisms. Respir Physiol Neurobiol. 2006;152:266–81. https://doi.org/10.1016/j.resp.2006.02.016.

    Article  PubMed  Google Scholar 

  45. Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ. Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J Physiol. 2004;557:543–58. https://doi.org/10.1113/jphysiol.2003.057885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shannon R, Baekey DM, Morris KF, Lindsey BG. Ventrolateral medullary respiratory network and a model of cough motor pattern generation. J Appl Physiol. 1998;84:2020–35. https://doi.org/10.1152/jappl.1998.84.6.2020.

    Article  CAS  PubMed  Google Scholar 

  47. Janssens T, Silva M, Davenport PW, Van Diest I, Dupont LJ, Van den Bergh O. Attentional modulation of reflex cough. Chest. 2014;146:135–41. https://doi.org/10.1378/chest.13-2536.

    Article  PubMed  Google Scholar 

  48. Mazzone SB, McLennan L, McGovern AE, Egan GF, Farrell MJ. Representation of capsaicin-evoked urge-to-cough in the human brain using functional magnetic resonance imaging. Am J Respir Crit Care Med. 2007;176:327–32. https://doi.org/10.1164/rccm.200612-1856OC.

    Article  PubMed  Google Scholar 

  49. Mazzone SB, McGovern AE, Yang S-K, Woo A, Phipps S, Ando A, et al. Sensorimotor circuitry involved in the higher brain control of coughing. Cough. 2013;9:7. https://doi.org/10.1186/1745-9974-9-7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Driessen AK, Farrell MJ, Mazzone SB, McGovern AE. Multiple neural circuits mediating airway sensations: recent advances in the neurobiology of the urge-to-cough. Respir Physiol Neurobiol. 2016;226:115–20. https://doi.org/10.1016/j.resp.2015.09.017.

    Article  PubMed  Google Scholar 

  51. Mazzone SB, Undem BJ. Vagal afferent innervation of the airways in health and disease. Physiol Rev. 2016;96:975–1024. https://doi.org/10.1152/physrev.00039.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Simonyan K, Saad ZS, Loucks TMJ, Poletto CJ, Ludlow CL. Functional neuroanatomy of human voluntary cough and sniff production. Neuroimage. 2007;37:401–9. https://doi.org/10.1016/j.neuroimage.2007.05.021.

    Article  PubMed  Google Scholar 

  53. Xu F, Frazier DT, Zhang Z, Baekey DM, Shannon R. Cerebellar modulation of cough motor pattern in cats. J Appl Physiol Bethesda Md. 1985;1997(83):391–7. https://doi.org/10.1152/jappl.1997.83.2.391.

    Article  Google Scholar 

  54. Hallett M. Physiology of basal ganglia disorders: an overview. Can J Neurol Sci J Can Sci Neurol. 1993;20:177–83. https://doi.org/10.1017/S0317167100047909.

    Article  CAS  Google Scholar 

  55. Mazzone SB, Cole LJ, Ando A, Egan GF, Farrell MJ. Investigation of the neural control of cough and cough suppression in humans using functional brain imaging. J Neurosci. 2011;31:2948–58. https://doi.org/10.1523/JNEUROSCI.4597-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fontana GA. Before we get started: what is a cough? Lung. 2008;186:S3-6. https://doi.org/10.1007/s00408-007-9036-8.

    Article  PubMed  Google Scholar 

  57. Hall JE, Guyton AC. Guyton and Hall textbook of medical physiology. 12th ed. Philadelphia, Pa: Saunders/Elsevier; 2011.

  58. Smith JA, Aliverti A, Quaranta M, McGuinness K, Kelsall A, Earis J, et al. Chest wall dynamics during voluntary and induced cough in healthy volunteers. J Physiol. 2012;590:563–74. https://doi.org/10.1113/jphysiol.2011.213157.

    Article  CAS  PubMed  Google Scholar 

  59. Brandimore AE, Troche MS, Huber JE, Hegland KW. Respiratory kinematic and airflow differences between reflex and voluntary cough in healthy young adults. Front Physiol. 2015. https://doi.org/10.3389/fphys.2015.00284.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hegland K, Troche M, Davenport P. Cough expired volume and airflow rates during sequential induced cough. Front Physiol. 2013;4:167. https://doi.org/10.3389/fphys.2013.00167.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ross BB, Gramiak R, Rahn H. Physical dynamics of the cough mechanism. J Appl Physiol. 1955;8:264–8. https://doi.org/10.1152/jappl.1955.8.3.264.

    Article  CAS  PubMed  Google Scholar 

  62. Miles A, McFarlane M, Huckabee M-L. Inter-rater reliability for judgment of cough following citric acid inhalation after training. Speech Lang Hear. 2014;17:204–9. https://doi.org/10.1179/2050572814Y.0000000040.

    Article  Google Scholar 

  63. Laciuga H, Brandimore AE, Troche MS, Hegland KW. Analysis of clinicians’ perceptual cough evaluation. Dysphagia. 2016;31:521–30. https://doi.org/10.1007/s00455-016-9708-8.

    Article  PubMed  Google Scholar 

  64. Sancho J, Servera E, Díaz J, Marín J. Comparison of peak cough flows measured by pneumotachograph and a portable peak flow meter. Am J Phys Med Rehabil. 2004;83:608–12. https://doi.org/10.1097/01.PHM.0000133431.70907.A2.

    Article  PubMed  Google Scholar 

  65. Suárez AA, Pessolano FA, Monteiro SG, Ferreyra G, Capria ME, Mesa L, et al. Peak flow and peak cough flow in the evaluation of expiratory muscle weakness and bulbar impairment in patients with neuromuscular disease. Am J Phys Med Rehabil. 2002;81:506–11. https://doi.org/10.1097/00002060-200207000-00007.

    Article  PubMed  Google Scholar 

  66. Cook NR, Evans DA, Scherr PA, Speizer FE, Vedal S, Branch LG, et al. Peak expiratory flow rate in an elderly population. Am J Epidemiol. 1989;130:66–78. https://doi.org/10.1093/oxfordjournals.aje.a115324.

    Article  CAS  PubMed  Google Scholar 

  67. Barber CM, Curran AD, Bradshaw LM, Morice AH, Rawbone R, Fishwick D. Reproducibility and validity of a yan-style portable citric acid cough challenge. Pulm Pharmacol Ther. 2005;18:177–80. https://doi.org/10.1016/j.pupt.2004.11.009.

    Article  CAS  PubMed  Google Scholar 

  68. Ruppel GL. Aerosol use in the pulmonary function lab. Respir Care. 2015;60:931–40. https://doi.org/10.4187/respcare.03493.

    Article  PubMed  Google Scholar 

  69. Wallace E, Guiu Hernandez E, Ang A, Hiew S, Macrae P. A systematic review of methods of citric acid cough reflex testing. Pulm Pharmacol Ther. 2019;58:101827. https://doi.org/10.1016/j.pupt.2019.101827.

    Article  CAS  PubMed  Google Scholar 

  70. Ebihara S, Saito H, Kanda A, Nakajoh M, Takahashi H, Arai H, et al. Impaired efficacy of cough in patients with Parkinson disease. Chest. 2003;124:1009–15. https://doi.org/10.1378/chest.124.3.1009.

    Article  PubMed  Google Scholar 

  71. Wallace E, Guiu Hernandez E, Ang A, Macrae P. Quantifying test-retest variability of natural and suppressed citric acid cough thresholds and urge to cough ratings. Pulm Pharmacol Ther. 2019;58:101838. https://doi.org/10.1016/j.pupt.2019.101838.

    Article  CAS  PubMed  Google Scholar 

  72. Miles A, Moore S, McFarlane M, Lee F, Allen J, Huckabee M-L. Comparison of cough reflex test against instrumental assessment of aspiration. Physiol Behav. 2013;118:25–31. https://doi.org/10.1016/j.physbeh.2013.05.004.

    Article  CAS  PubMed  Google Scholar 

  73. Kallesen M, Psirides A, Huckabee M-L. Comparison of cough reflex testing with videoendoscopy in recently extubated intensive care unit patients. J Crit Care. 2016;33:90–4. https://doi.org/10.1016/j.jcrc.2016.02.004.

    Article  PubMed  Google Scholar 

  74. Miles A, Zeng ISL, McLauchlan H, Huckabee M-L. Cough reflex testing in dysphagia following stroke: a randomized controlled trial. J Clin Med Res. 2013;5:222. https://doi.org/10.4021/jocmr1340w.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Miles A. Silent aspiration and cough reflex testing [Internet]. Dysphagia Cafe. 2015.

  76. • Wallace ES, Huckabee M, Macrae P. Cough reflex testing in clinical dysphagia practice. Adv Commun. Swallowing IOS Press; 2022:Preprint:1–9. https://doi.org/10.3233/ACS-220008. A review of cough reflex testing and step-by-step instructions on how it can be administered in a clinical setting.

  77. • Perry SE, Miles A, Fink JN, Huckabee M-L. The dysphagia in stroke protocol reduces aspiration pneumonia in patients with dysphagia following acute stroke: a clinical audit. Transl Stroke Res. 2019;10:36–43. https://doi.org/10.1007/s12975-018-0625-z. A comparison of clinical outcomes post-implementation of a structured cough reflex testing protocol in 4 hospital settings in New Zealand.

    Article  PubMed  Google Scholar 

  78. Field M, Wenke R, Sabet A, Lawrie M, Cardell E. Implementing cough reflex testing in a clinical pathway for acute stroke: a pragmatic randomised controlled trial. Dysphagia. 2018;33:827–39. https://doi.org/10.1007/s00455-018-9908-5.

    Article  PubMed  Google Scholar 

  79. Holmes S. A service evaluation of cough reflex testing to guide dysphagia management in the postsurgical adult head and neck patient population. Curr Opin Otolaryngol Head Neck Surg. 2016;24:191–6. https://doi.org/10.1097/MOO.0000000000000256.

    Article  PubMed  Google Scholar 

  80. Curtis JA, Troche MS. Handheld cough testing: a novel tool for cough assessment and dysphagia screening. Dysphagia. 2020;35:993–1000. https://doi.org/10.1007/s00455-020-10097-z.

    Article  PubMed  Google Scholar 

  81. Wakasugi Y, Tohara H, Nakane A, Murata S, Mikushi S, Susa C, et al. Usefulness of a handheld nebulizer in cough test to screen for silent aspiration. Odontology. 2014;102:76–80. https://doi.org/10.1007/s10266-012-0085-y.

    Article  PubMed  Google Scholar 

  82. Hegland KW, Troche MS, Brandimore A, Okun MS, Davenport PW. Comparison of two methods for inducing reflex cough in patients with Parkinson’s disease, with and without dysphagia. Dysphagia. 2016;31:66–73. https://doi.org/10.1007/s00455-015-9659-5.

    Article  PubMed  Google Scholar 

  83. Morice AH, Fontana GA, Belvisi MG, Birring SS, Chung KF, Dicpinigaitis PV, et al. ERS guidelines on the assessment of cough. Eur Respir J. 2007;29:1256–76. https://doi.org/10.1183/09031936.00101006.

    Article  CAS  PubMed  Google Scholar 

  84. Fontana GA, Pantaleo T, Lavorini F, Benvenuti F, Gangemi S. Defective motor control of coughing in Parkinson’s disease. Am J Respir Crit Care Med. 1998;158:458–64. https://doi.org/10.1164/ajrccm.158.2.9705094.

    Article  CAS  PubMed  Google Scholar 

  85. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–81. https://doi.org/10.1249/00005768-198205000-00012.

    Article  CAS  PubMed  Google Scholar 

  86. Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia. 1996;11:93–8. https://doi.org/10.1007/bf00417897.

    Article  CAS  PubMed  Google Scholar 

  87. Curtis JA, Borders JC, Perry SE, Dakin AE, Seikaly ZN, Troche MS. Visual analysis of swallowing efficiency and safety (VASES): a standardized approach to rating ppharyngeal residue, penetration, and aspiration during FEES. Dysphagia. 2021. https://doi.org/10.1007/s00455-021-10293-5.

    Article  PubMed  Google Scholar 

  88. van den Bos MAJ, Geevasinga N, Higashihara M, Menon P, Vucic S. Pathophysiology and diagnosis of ALS: insights from advances in neurophysiological techniques. Int J Mol Sci. 2019;20:2818. https://doi.org/10.3390/ijms20112818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bento-Abreu A, Van Damme P, Van Den Bosch L, Robberecht W. The neurobiology of amyotrophic lateral sclerosis. Eur J Neurosci. 2010;31:2247–65. https://doi.org/10.1111/j.1460-9568.2010.07260.x.

    Article  PubMed  Google Scholar 

  90. Corcia P, Pradat P, Salachas F, Bruneteau G, le Forestier N, Seilhean D, et al. Causes of death in a post-mortem series of ALS patients. Amyotroph Lateral Scler. 2008;9:59–62. https://doi.org/10.1080/17482960701656940.

    Article  PubMed  Google Scholar 

  91. Ruoppolo G, Schettino I, Frasca V, Giacomelli E, Prosperini L, Cambieri C, et al. Dysphagia in amyotrophic lateral sclerosis: prevalence and clinical findings. Acta Neurol Scand. 2013;128:397–401. https://doi.org/10.1111/ane.12136.

    Article  CAS  PubMed  Google Scholar 

  92. Lo Bianco C, Ridet J-L, Schneider BL, Déglon N, Aebischer P. α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci. 2002;99:10813–8. https://doi.org/10.1073/pnas.152339799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Massano J, Bhatia KP. Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med. 2012;2:a008870. https://doi.org/10.1101/cshperspect.a008870.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pitts T, Bolser D, Rosenbek J, Troche M, Sapienza C. Voluntary cough production and swallow dysfunction in Parkinson’s disease. Dysphagia. 2008;23:297–301. https://doi.org/10.1007/s00455-007-9144-x.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pitts T, Bolser D, Rosenbek J, Troche M, Okun MS, Sapienza C. Impact of expiratory muscle strength training on voluntary cough and swallow function in Parkinson disease. Chest. 2009;135:1301–8. https://doi.org/10.1378/chest.08-1389.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hegland KW, Okun MS, Troche MS. Sequential voluntary cough and aspiration or aspiration risk in Parkinson’s disease. Lung. 2014;192:601–8. https://doi.org/10.1007/s00408-014-9584-7.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Michou E, Baijens L, Rofes L, Sanz P, Clavé P. Oropharyngeal swallowing disorders in Parkinson’s disease: revisited. Int J Speech Lang Pathol Audiol. 2013;1:76–88. https://doi.org/10.12970/2311-1917.2013.01.02.5.

    Article  Google Scholar 

  98. Wilson SH, Cooke NT, Edwards RH, Spiro SG. Predicted normal values for maximal respiratory pressures in caucasian adults and children. Thorax. 1984;39:535–8. https://doi.org/10.1136/thx.39.7.535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. • Troche MS, Curtis JA, Sevitz JS, Dakin AE, Perry SE, Borders JC, et al. Rehabilitating cough dysfunction in Parkinson’s disease: a randomized controlled trial. Mov Disord. 2022. https://doi.org/10.1002/mds.29268. A randomized controlled trial comparing strength and skill-based approaches to improving airway protection in PD.

    Article  PubMed  PubMed Central  Google Scholar 

  100. • Sevitz JS, Borders JC, Dakin AE, Kiefer BR, Alcalay RN, Kuo S-H, et al. Rehabilitation of airway protection in individuals with movement disorders: a telehealth feasibility study. Am J Speech Lang Pathol. 2022;31:2741–58. https://doi.org/10.1044/2022_AJSLP-22-00063. A study evaluating the implementation of EMST and cough skill training via telehealth with individuals with neurodegenerative movement disorders.

    Article  PubMed  PubMed Central  Google Scholar 

  101. • Curtis JA, Dakin AE, Troche MS. Respiratory–swallow coordination training and voluntary cough skill training: a single-subject treatment study in a person with Parkinson’s disease. J Speech Lang Hear Res. 2020;63:472–86. https://doi.org/10.1044/2019_JSLHR-19-00207. A single-subject study with large effect sizes following a treatment plan using respiratory-swallow coordination and cough skill training.

    Article  PubMed  Google Scholar 

  102. Sroussi HY, Epstein JB, Bensadoun R-J, Saunders DP, Lalla RV, Migliorati CA, et al. Common oral complications of head and neck cancer radiation therapy: mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis. Cancer Med. 2017;6:2918–31. https://doi.org/10.1002/cam4.1221.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Awan MJ, Mohamed ASR, Lewin JS, Baron CA, Gunn GB, Rosenthal DI, et al. Late radiation-associated dysphagia (late-RAD) with lower cranial neuropathy after oropharyngeal radiotherapy: a preliminary dosimetric comparison. Oral Oncol. 2014;50:746–52. https://doi.org/10.1016/j.oraloncology.2014.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rosenthal DI, Lewin JS, Eisbruch A. Prevention and treatment of dysphagia and aspiration after chemoradiation for head and neck cancer. J Clin Oncol. 2006;24:2636–43. https://doi.org/10.1200/JCO.2006.06.0079.

    Article  PubMed  Google Scholar 

  105. Wall LR, Ward EC, Cartmill B, Hill AJ. Physiological changes to the swallowing mechanism following (chemo)radiotherapy for head and neck cancer: a systematic review. Dysphagia. 2013;28:481–93. https://doi.org/10.1007/s00455-013-9491-8.

    Article  PubMed  Google Scholar 

  106. Hutcheson KA, Lewin JS, Barringer DA, Lisec A, Gunn GB, Moore MWS, et al. Late dysphagia after radiotherapy-based treatment of head and neck cancer. Cancer. 2012;118:5793–9. https://doi.org/10.1002/cncr.27631.

    Article  PubMed  Google Scholar 

  107. Kraaijenga SAC, van der Molen L, Jacobi I, Hamming-Vrieze O, Hilgers FJM, van den Brekel MWM. Prospective clinical study on long-term swallowing function and voice quality in advanced head and neck cancer patients treated with concurrent chemoradiotherapy and preventive swallowing exercises. Eur Arch Otorhinolaryngol. 2015;272:3521–31. https://doi.org/10.1007/s00405-014-3379-6.

    Article  PubMed  Google Scholar 

  108. Rogus-Pulia NM, Pierce MC, Mittal BB, Zecker SG, Logemann JA. Changes in swallowing physiology and patient perception of swallowing function following chemoradiation for head and neck cancer. Dysphagia. 2014;29:223–33. https://doi.org/10.1007/s00455-013-9500-y.

    Article  PubMed  Google Scholar 

  109. Xiong J, Krishnaswamy G, Raynor S, Loh KS, Kwa ALH, Lim CM. Risk of swallowing-related chest infections in patients with nasopharyngeal carcinoma treated with definitive intensity-modulated radiotherapy. Head Neck. 2016;38:E1660–5. https://doi.org/10.1002/hed.24296.

    Article  PubMed  Google Scholar 

  110. Xu B, Boero IJ, Hwang L, Le Q-T, Moiseenko V, Sanghvi PR, et al. Aspiration pneumonia after concurrent chemoradiotherapy for head and neck cancer. Cancer. 2015;121:1303–11. https://doi.org/10.1002/cncr.29207.

    Article  PubMed  Google Scholar 

  111. Hutcheson KA, Barrow MP, Plowman EK, Lai SY, Fuller CD, Barringer DA, et al. Expiratory muscle strength training for radiation-associated aspiration after head and neck cancer: A case series. Laryngoscope. 2018;128:1044–51. https://doi.org/10.1002/lary.26845.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle S. Troche.

Ethics declarations

Conflict of Interest

Dr. Troche reports the following: Financial: Salary — employment — Teachers College, NIH/NINDS — grant, and MedBridge Inc. — Royalty — Consulting. Non-financial: Dysphagia Research Society — professional — board membership, and Journal of Speech Language and Hearing Research — editorial board member. The other authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on LARYNGOLOGY: Update on Dysphagia

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lowell, E.R., Borders, J.C., Sevitz, J.S. et al. A Primer on Hypotussic Cough: Mechanisms and Assessment. Curr Otorhinolaryngol Rep 11, 182–191 (2023). https://doi.org/10.1007/s40136-023-00446-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40136-023-00446-5

Keywords

Navigation