Skip to main content

Advertisement

Log in

Diagnosis and Treatment of Congenital Sensorineural Hearing Loss

  • Pediatric Otolaryngology (K Rosbe, Section Editor)
  • Published:
Current Otorhinolaryngology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this report is to review current literature regarding the work-up and management of congenital sensorineural hearing loss.

Recent Findings

Diagnostic evaluation of a newborn with sensorineural hearing loss begins with a complete audiologic evaluation and comprehensive history and physical exam. This review presents a diagnostic algorithm for the work-up of congenital hearing loss, focusing on the three following modalities: cytomegalovirus testing, genetic evaluation, and imaging.

Summary

Newborn hearing loss is a common problem and may be attributed to genetic and non-genetic factors. Complete diagnostic evaluation and treatment are essential for preventing delays in language development. Treatment consists of early intervention services and consideration of hearing aid amplification and cochlear implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mehra S, Eavey RD, Keamy DG. The epidemiology of hearing impairment in the United States: newborns, children, and adolescents. Otolaryngol Head Neck Surg. 2009;140(4):461–72.

    Article  PubMed  Google Scholar 

  2. Kennedy CR, McCann DC, Campbell MJ. Language ability after early detection of permanent childhood hearing impairment. N Engl J Med. 2006;354(20):2131–41.

    Article  CAS  PubMed  Google Scholar 

  3. Moeller MP. Early intervention and language development in children who are deaf and hard of hearing. Pediatrics. 2000;106(3):1–9.

    Article  Google Scholar 

  4. Joint Committee on Infant Hearing. Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics. 2007;120(4):898–921.

    Article  Google Scholar 

  5. Balkany TJ, Berman SA, Simmons MA, Jafek BW. Middle ear effusions in neonates. Laryngoscope. 1978;88(3):398–405.

    Article  CAS  PubMed  Google Scholar 

  6. Listening and Spoken Language Knowledge Center. IDEA Part C. AG Bell Academy. Web July 2017.

  7. Centers for Disease Control and Prevention. Early hearing detection and intervention among infants—hearing screening and follow-up survey, United States, 2005-2006 and 2009-2010. MMWR Surveill Summ. 2014;63(3):20–6.

    Google Scholar 

  8. Koffler T, Ushakov K, Avraham KB. Genetics of hearing loss: syndromic. Otolaryngol Clin N Am. 2015;48:1041–61.

    Article  Google Scholar 

  9. Yamaguchi A, Oh-ishi T, Arai T, et al. Screening for seemingly healthy newborns with congenital cytomegalovirus infection by quantitative real-time polymerase chain reaction using newborn urine: an observational study. BMJ Open. 2017;7:e013810.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dollard SC, Grosse SD, Ross DS. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med Virol. 2007;17(5):355–63.

    Article  PubMed  Google Scholar 

  11. Lanzieri TM, Chung W, Flores M, et al. Hearing loss in children with asymptomatic congenital cytomegalovirus infection. Pediatrics. 2017;139(3). https://doi.org/10.1542/peds.2016-2610.

  12. Boppana SB, Ross SA, Shimamura M, et al. Saliva polymerase-chain-reaction assays for cytomegalovirus screening in newborns. NEJM. 2011;364(22):2111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peckham CS, Johnson C, Ades A, et al. Early acquisition of cytomegalovirus infection. Arch Dis Child. 1987;62(8):780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boppana SB, Ross SA, Novak Z, et al. Dried blood spot real-time polymerase chain reaction assays to screen newborns for congenital cytomegalovirus infection. JAMA. 2010;202(14):1375–82.

  15. Kimberlin DW, Lin CY, Sanchez PJ, et al. Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized controlled trial. J Pediatrics. 2003;134(1):16–25.

    Article  Google Scholar 

  16. •• Kimberlin DW, Jester PM, Sanchez PJ, et al. Valganciclovir for symptomatic congenital cytomegalovirus disease. NEJM. 2015;372(1):933–43. The first randomized, placebo-controlled trial of valganciclovir treatment in infants with symptomatic congenital CMV disease assessing hearing outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kimberlin D. Congenital CMV and hearing loss in children up to 4 years of age: treating with valganciclovir therapy. ClinicalTrials.gov . 2017. Web July 2017. https://clinicaltrials.gov/ct2/show/NCT01649869

  18. Consensus Statement ACMG. Genetics evaluation guidelines for the etiologic diagnosis of congenital hearing loss. Genet Med. 2002;4(3):162–71.

    Article  Google Scholar 

  19. Liu XZ, Xu LR, Zhang SL, et al. Epidemiological and genetic studies of congenital profound deafness. Am J Med Genet. 1994;53:192–5.

    Article  CAS  PubMed  Google Scholar 

  20. Chang KW. Genetics of hearing loss—nonsyndromic. Otolaryngol Clin N Am. 2015;48(6):1063–72.

    Article  Google Scholar 

  21. The University of Iowa - Molecular Otolaryngology and Renal Research Laboratories. OtoSCOPE Genetic Testing. Web July 2017. https://morl.lab.uiowa.edu/otoscope-genetic-testing.

  22. • Shearer AE, Smith RJ. Massively parallel sequencing for genetic diagnosis of hearing loss: the new standard of care. Otolaryngol Head Neck Surg. 2015;153(2):175–82. Review article evaluating the use of new genetic sequencing techniques.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hilgert N, Smith RJ, Camp GV. Forty-six genes causing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics? Mutat Res. 2009;681:189–96.

    Article  CAS  PubMed  Google Scholar 

  24. Chan DK, Chang KW. GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype and auditory phenotype. Laryngoscope. 2014;124(2):E34–53.

    Article  PubMed  Google Scholar 

  25. Colvin IB, Beale T, Harrop-Griffiths K. Long-term follow-up of hearing loss in children and young adults with enlarged vestibular aqueducts: relationship to radiologic findings and Pendred syndrome diagnosis. Laryngoscope. 2006;116:2027–36.

    Article  PubMed  Google Scholar 

  26. Shearer AE, Kolbe DL, Azaiez H, et al. Copy number variants are a common cause of non-syndromic hearing loss. Genome Med. 2014;6(5):37.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Francey LJ, Conlin LK, Kadesch HE, et al. Genome-wide SNP genotyping identifies the stereocilin (STRC) gene as a major contributor to pediatric bilateral sensorineural hearing impairment. Am J Med Genet A. 2012;158A(2):298–308.

    Article  PubMed  Google Scholar 

  28. Mafong DD, Shin EJ, Lalwani AK. Use of laboratory evaluation and radiologic imaging in diagnostic evaluation of children with sensorineural hearing loss. Laryngoscope. 2002;112(1):1–7.

    Article  PubMed  Google Scholar 

  29. Alemi AS, Chan DK. Progressive hearing loss and head trauma in enlarged vestibular aqueduct: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2015;153(4):512–7.

    Article  PubMed  Google Scholar 

  30. Preciado DA, Lim LHY, Cohen AP, et al. A diagnostic paradigm for childhood idiopathic sensorineural hearing loss. Otolaryngol Head Neck Surg. 2004;131(6):804–9.

    Article  PubMed  Google Scholar 

  31. Miglioretti DL, Johnson E, Williams A, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 2013;167(8):700–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gupta SS, Maheshwari SR, Kirtane MV, Shrivastav N. Pictorial review of MRI/CT scan in congenital temporal bone anomalies, in patients for cochlear implant. Indian J Radiol Imaging. 2009;19(2):99–106.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sprung J, Flick RP, Katusic SK, et al. Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin Proc. 2012;87:120–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Flick RP, Katusic SK, Colligan RC, et al. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics. 2011;128(5):1053-61.

  35. Ing C, DiMaggio CJ, Whitehouse A, et al. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics. 2012;130:476–85.

    Article  Google Scholar 

  36. Licameli G, Kenna MA. Is computed tomography (CT) or magnetic resonance imaging (MRI) more useful in the evaluation of pediatric sensorineural hearing loss. Laryngoscope. 2010;120:2358–9.

    Article  PubMed  Google Scholar 

  37. Bale JF Jr. Cytomegalovirus infections. Semin Pediatr Neurol. 2012;19:101–6.

    Article  PubMed  Google Scholar 

  38. Zazo Seco C, Wesdorp M, Feenstra I, et al. The diagnostic yield of whole-exome sequencing targeting a gene panel for hearing impairment in The Netherlands. Eur J Hum Genet. 2017;25(3):308–14.

    Article  CAS  PubMed  Google Scholar 

  39. Sloan-Heggen CM, Bierer AO, Shearer AE, et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet. 2016;135:441–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen JX, Kachniarz B, Chin JJ. Diagnostic yield of computed tomography scan for pediatric hearing loss: a systematic review. Otolaryngol Head Neck Surg. 2014;151(5):718–39.

    Article  PubMed  PubMed Central  Google Scholar 

  41. •• Kachniarz B, Chen JX, Gilani S, Shin JJ. Diagnostic yield of MRI for pediatric hearing loss: a systematic review. Otolaryngol-Head Neck Surg. 2015;152(1):5–22. High quality systematic review and meta-analysis evaluating the diagnostic yield of MRI relative to CT for pediatric hearing loss with a subgroup analysis according to hearing loss severity and diagnostic imaging findings.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan K Chan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Relevant Financial Disclosures

None.

Additional information

This article is part of the Topical Collection on Pediatric Otolaryngology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chari, D.A., Chan, D.K. Diagnosis and Treatment of Congenital Sensorineural Hearing Loss. Curr Otorhinolaryngol Rep 5, 251–258 (2017). https://doi.org/10.1007/s40136-017-0163-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40136-017-0163-3

Keywords

Navigation