Skip to main content

Advertisement

Log in

A Comparison of Genomic Advances in Exfoliation Syndrome and Primary Open-Angle Glaucoma

  • Diagnosis and Monitoring of Glaucoma (J Kammer, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review compares recent progress of the genetics of primary open-angle glaucoma (POAG) and exfoliation syndrome/glaucoma (XFS/XFG).

Recent Findings

Many common variants and associated endophenotypes have been discovered in POAG through genomic wide association studies (GWAS), particularly in ethnically diverse cohorts. Though the functional significance of these common variants is unknown, these advances have increased heritability estimates and helped create polygenic risk scores. In contrast, few variants have been identified in XFS/XFG, hindering efforts to examine endophenotypes, create satisfactory animal models, and establish a firm genetic basis.

Summary

Rapid genetic advancements have demonstrated that genes of small effect may contribute a larger role in POAG than previously thought. Given the pace of gene discovery, it is likely that novel therapies and genetic screening tools are future possibilities. Limited progress in XFS/XFG suggests an underlying non-hereditary disease component. A multiomic approach for XFS/XFG may provide further insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90. https://doi.org/10.1016/j.ophtha.2014.05.013.

    Article  PubMed  Google Scholar 

  2. Ritch R. Exfoliation syndrome-the most common identifiable cause of open-angle glaucoma. J Glaucoma. 1994;3(2):176–7.

    CAS  PubMed  Google Scholar 

  3. Kang JH, Loomis S, Wiggs JL, Stein JD, Pasquale LR. Demographic and geographic features of exfoliation glaucoma in 2 United States-based prospective cohorts. Ophthalmology. 2012;119(1):27–35. https://doi.org/10.1016/j.ophtha.2011.06.018.

    Article  PubMed  Google Scholar 

  4. Konstas AGP, Ringvold A. Epidemiology of exfoliation syndrome. J Glaucoma. 2018;27(Suppl 1):S4–s11. https://doi.org/10.1097/ijg.0000000000000908.

    Article  PubMed  Google Scholar 

  5. Leske MC, Connell AM, Schachat AP, Hyman L. The Barbados eye study. Prevalence of open angle glaucoma. Arch Ophthalmol. 1994;112(6):821–9. https://doi.org/10.1001/archopht.1994.01090180121046.

    Article  CAS  PubMed  Google Scholar 

  6. Wensor MD, McCarty CA, Stanislavsky YL, Livingston PM, Taylor HR. The prevalence of glaucoma in the Melbourne Visual Impairment Project. Ophthalmology. 1998;105(4):733–9. https://doi.org/10.1016/s0161-6420(98)94031-3.

    Article  CAS  PubMed  Google Scholar 

  7. Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275(5300):668–70.

    Article  CAS  Google Scholar 

  8. •• Han X, Souzeau E, Ong JS, An J, Siggs OM, Burdon KP, et al. Myocilin gene Gln368Ter variant penetrance and association with glaucoma in population-based and registry-based studies. JAMA Ophthalmol. 2019;137(1):28–35. https://doi.org/10.1001/jamaophthalmol.2018.4477This population-based study demonstrated that MYOC Gln368Ter confers a higher risk in advanced glaucoma cases and also demonstrated a strong penetrance than previously reported in other population-based studies.

    Article  PubMed  Google Scholar 

  9. Jain A, Zode G, Kasetti RB, Ran FA, Yan W, Sharma TP, et al. CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci U S A. 2017;114(42):11199–204. https://doi.org/10.1073/pnas.1706193114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. • Alward WLM, van der Heide C, Khanna CL, Roos BR, Sivaprasad S, Kam J, et al. Myocilin mutations in patients with normal-tension glaucoma. JAMA Ophthalmol. 2019;137(5):559–63. https://doi.org/10.1001/jamaophthalmol.2019.0005This paper found that MYOC Gln368Ter may be associated with glaucomas without elevated introcular pressures though at a lower frequency than elevated IOPs, suggesting that MYOC glaucomas may arise over a range of IOPs.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 2002;295(5557):1077–9.

    Article  CAS  Google Scholar 

  12. Alward WL, Kwon YH, Kawase K, Craig JE, Hayreh SS, Johnson AT, et al. Evaluation of optineurin sequence variations in 1,048 patients with open-angle glaucoma. American journal of ophthalmology. 2003;136(5):904–10.

    Article  CAS  Google Scholar 

  13. Wiggs JL, Auguste J, Allingham RR, Flor JD, Pericak-Vance MA, Rogers K, et al. Lack of association of mutations in optineurin with disease in patients with adult-onset primary open-angle glaucoma. Archives of ophthalmology. 2003;121(8):1181–3.

    Article  Google Scholar 

  14. Sirohi K, Swarup G. Defects in autophagy caused by glaucoma-associated mutations in optineurin. Exp Eye Res. 2016;144:54–63.

    Article  CAS  Google Scholar 

  15. • VanderWall KB, Huang K-C, Pan Y, Lavekar SS, Fligor CM, Allsop AR, et al. Retinal ganglion cells with a glaucoma optn(e50k) mutation exhibit neurodegenerative phenotypes when derived from three-dimensional retinal organoids. Stem Cell Reports. 2020;15(1):52–66. https://doi.org/10.1016/j.stemcr.2020.05.009This paper demonstrated possible POAG mechanisms that arise from E50K mutation through in vitro models, which is an important stepping stone for future therapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. • Chernyshova K, Inoue K, Yamashita SI, Fukuchi T, Kanki T. Glaucoma-associated mutations in the optineurin gene have limited impact on Parkin-dependent mitophagy. Invest Ophthalmol Vis Sci. 2019;60(10):3625–35. https://doi.org/10.1167/iovs.19-27184This paper showed that mutations in OPTN cause glaucoma in a mitophagy-independent manner.

  17. • O'Loughlin T, Kruppa AJ, Ribeiro ALR, Edgar JR, Ghannam A, Smith AM, et al. OPTN recruitment to a Golgi-proximal compartment regulates immune signalling and cytokine secretion. J Cell Sci. 2020;133(12). https://doi.org/10.1242/jcs.239822This paper showed that mutations in OPTN may cause glaucoma by promoting a pro-inflammatory cytokine pathway.

  18. Awadalla MS, Fingert JH, Roos BE, Chen S, Holmes R, Graham SL, et al. Copy number variations of TBK1 in Australian patients with primary open-angle glaucoma. Am J Ophthalmol. 2015;159(1):124–30.e1. https://doi.org/10.1016/j.ajo.2014.09.044.

    Article  CAS  PubMed  Google Scholar 

  19. Kawase K, Allingham RR, Meguro A, Mizuki N, Roos B, Solivan-Timpe FM, et al. Confirmation of TBK1 duplication in normal tension glaucoma. Exp Eye Res. 2012;96(1):178–80. https://doi.org/10.1016/j.exer.2011.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ritch R, Darbro B, Menon G, Khanna CL, Solivan-Timpe F, Roos BR, et al. TBK1 gene duplication and normal-tension glaucoma. JAMA Ophthalmology. 2014;132(5):544–8. https://doi.org/10.1001/jamaophthalmol.2014.104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Richter B, Sliter DA, Herhaus L, Stolz A, Wang C, Beli P, et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A. 2016;113(15):4039–44. https://doi.org/10.1073/pnas.1523926113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li F, Xie X, Wang Y, Liu J, Cheng X, Guo Y, et al. Structural insights into the interaction and disease mechanism of neurodegenerative disease-associated optineurin and TBK1 proteins. Nat Commun. 2016;7:12708. https://doi.org/10.1038/ncomms12708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. • DeLuca AP, Alward WLM, Liebmann J, Ritch R, Kawase K, Kwon YH, et al. Genomic organization of TBK1 copy number variations in glaucoma patients. Journal of Glaucoma. 2017;26(12):1063–7. https://doi.org/10.1097/IJG.0000000000000792This paper found that repetitive sequences flanking CNV regions in TBK1. Though functional significance is unknown, it suggests that errors in genetic recombination may lead TBK1 mutations.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ringvold A, Blika S, Elsås T, Guldahl J, Brevik T, Hesstvedt P, et al. The Middle-Norway eye-screening study. I. Epidemiology of the pseudo-exfoliation syndrome. Acta Ophthalmol (Copenh). 1988;66(6):652–8. https://doi.org/10.1111/j.1755-3768.1988.tb04056.x.

    Article  CAS  PubMed  Google Scholar 

  25. Fingert JH, Robin AL, Scheetz TE, Kwon YH, Liebmann JM, Ritch R, et al. Tank-binding kinase 1 (TBK1) gene and open-angle glaucomas (An American Ophthalmological Society Thesis). Transactions of the American Ophthalmological Society. 2016;114:T6-T.

    Google Scholar 

  26. Choquet H, Wiggs JL, Khawaja AP. Clinical implications of recent advances in primary open-angle glaucoma genetics. Eye. 2020;34(1):29–39. https://doi.org/10.1038/s41433-019-0632-7.

    Article  PubMed  Google Scholar 

  27. Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317(5843):1397–400. https://doi.org/10.1126/science.1146554.

    Article  CAS  PubMed  Google Scholar 

  28. Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A, DeWan A, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet. 2010;42(10):906–9. https://doi.org/10.1038/ng.661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burdon KP, Macgregor S, Hewitt AW, Sharma S, Chidlow G, Mills RA, et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet. 2011;43(6):574–8. https://doi.org/10.1038/ng.824.

    Article  CAS  PubMed  Google Scholar 

  30. Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM, et al. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS genetics. 2012;8(4):e1002654-e. https://doi.org/10.1371/journal.pgen.1002654.

    Article  CAS  Google Scholar 

  31. Osman W, Low SK, Takahashi A, Kubo M, Nakamura Y. A genome-wide association study in the Japanese population confirms 9p21 and 14q23 as susceptibility loci for primary open angle glaucoma. Hum Mol Genet. 2012;21(12):2836–42. https://doi.org/10.1093/hmg/dds103.

    Article  CAS  PubMed  Google Scholar 

  32. Gharahkhani P, Burdon KP, Fogarty R, Sharma S, Hewitt AW, Martin S, et al. Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat Genet. 2014;46(10):1120–5. https://doi.org/10.1038/ng.3079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoffmann TJ, Tang H, Thornton TA, Caan B, Haan M, Millen AE, et al. Genome-wide association and admixture analysis of glaucoma in the Women's Health Initiative. Hum Mol Genet. 2014;23(24):6634–43. https://doi.org/10.1093/hmg/ddu364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Z, Allingham RR, Nakano M, Jia L, Chen Y, Ikeda Y, et al. A common variant near TGFBR3 is associated with primary open angle glaucoma. Hum Mol Genet. 2015;24(13):3880–92. https://doi.org/10.1093/hmg/ddv128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aung T, Ozaki M, Mizoguchi T, Allingham RR, Li Z, Haripriya A, et al. A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nat Genet. 2015;47(4):387–92. https://doi.org/10.1038/ng.3226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Springelkamp H, Iglesias AI, Cuellar-Partida G, Amin N, Burdon KP, van Leeuwen EM, et al. ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure. Hum Mol Genet. 2015;24(9):2689–99. https://doi.org/10.1093/hmg/ddv027.

    Article  CAS  PubMed  Google Scholar 

  37. Bailey JN, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, et al. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet. 2016;48(2):189–94. https://doi.org/10.1038/ng.3482.

    Article  CAS  PubMed  Google Scholar 

  38. •• Aung T, Ozaki M, Lee MC, Schlötzer-Schrehardt U, Thorleifsson G, Mizoguchi T, et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat Genet. 2017;49(7):993–1004. https://doi.org/10.1038/ng.3875Five risk loci associated with XFS/XFG were identified in this GWAS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. •• Gharahkhani P, Burdon KP, Cooke Bailey JN, Hewitt AW, Law MH, Pasquale LR, et al. Analysis combining correlated glaucoma traits identifies five new risk loci for open-angle glaucoma. Sci Rep. 2018;8(1):3124. https://doi.org/10.1038/s41598-018-20435-9This study identified five risk loci for POAG using a combined approach with GWAS and endophenotype data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. •• Shiga Y, Akiyama M, Nishiguchi KM, Sato K, Shimozawa N, Takahashi A, et al. Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma. Hum Mol Genet. 2018;27(8):1486–96. https://doi.org/10.1093/hmg/ddy053Japanese-specific GWAS that identified seven new loci for POAG, three of which had not been previously replicated in European and African Populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. •• Choquet H, Paylakhi S, Kneeland SC, Thai KK, Hoffmann TJ, Yin J, et al. A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. Nat Commun. 2018;9(1):2278. https://doi.org/10.1038/s41467-018-04555-4This multiethnic GWAS study found 24 risk loci for POAG and identified an increased risk of POAG in certain ethnic cohorts (African ancestry, northern East Asian ancestries).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. •• MacGregor S, Ong J-S, An J, Han X, Zhou T, Siggs OM, et al. Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. Nat Genet. 2018;50(8):1067–71. https://doi.org/10.1038/s41588-018-0176-yThis GWAS identified 53 SNPs significantly associated with IOP and glaucoma, increasing IOP and POAG heritability estimates to >70%.

  43. •• Bonnemaijer PWM, Iglesias AI, Nadkarni GN, Sanyiwa AJ, Hassan HG, Cook C, et al. Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations. Hum Genet. 2018;137(10):847–62. https://doi.org/10.1007/s00439-018-1943-7This GWAS focused on individuals of African descent, identifying one novel risk loci EXOC4.

  44. •• Taylor KD, Guo X, Zangwill LM, Liebmann JM, Girkin CA, Feldman RM, et al. Genetic architecture of primary open-angle glaucoma in individuals of African descent: the African descent and glaucoma evaluation study III. Ophthalmology. 2019;126(1):38–48. https://doi.org/10.1016/j.ophtha.2018.10.031This GWAS discovered ENO4 as a risk loci in advance POAG for individuals of African ancestry.

    Article  PubMed  Google Scholar 

  45. •• Gong B, Zhang H, Huang L, Chen Y, Shi Y, Tam PO-S, et al. Mutant RAMP2 causes primary open-angle glaucoma via the CRLR-cAMP axis. Genetics in Medicine. 2019;21(10):2345–54. https://doi.org/10.1038/s41436-019-0507-0This animal study found that knockout of RAMP2 may lead to POAG pathogenesis through an IOP-independent pathway, highlighting a potential therapeutic target.

    Article  CAS  PubMed  Google Scholar 

  46. •• Hauser MA, Allingham RR, Aung T, Van Der Heide CJ, Taylor KD, Rotter JI, et al. Association of genetic variants with primary open-angle glaucoma among individuals with African ancestry. JAMA. 2019;322(17):1682–91. https://doi.org/10.1001/jama.2019.16161In this African GWAS, APBB2 was identified as a novel risk loci.

    Article  PubMed  PubMed Central  Google Scholar 

  47. •• Gharahkhani P, Jorgenson E, Hysi P, Khawaja AP, Pendergrass S, Han X, et al. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat Commun. 2021;12(1):1258. https://doi.org/10.1038/s41467-020-20851-4This recent GWAS study identified 127 loci associated with POAG, 44 of which are novel, in a large multi-ethnic cohort, increasing known POAG loci to >200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu Y, Hauser MA, Akafo SK, Qin X, Miura S, Gibson JR, et al. Investigation of known genetic risk factors for primary open angle glaucoma in two populations of African ancestry. Invest Ophthalmol Vis Sci. 2013;54(9):6248–54. https://doi.org/10.1167/iovs.13-12779.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Williams SEI, Whigham BT, Liu Y, Carmichael TR, Qin X, Schmidt S, et al. Major LOXL1 risk allele is reversed in exfoliation glaucoma in a black South African population. Molecular vision. 2010;16:705–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hayashi H, Gotoh N, Ueda Y, Nakanishi H, Yoshimura N. Lysyl oxidase-like 1 polymorphisms and exfoliation syndrome in the Japanese population. Am J Ophthalmol. 2008;145(3):582–5. https://doi.org/10.1016/j.ajo.2007.10.023.

    Article  CAS  PubMed  Google Scholar 

  51. Tanito M, Minami M, Akahori M, Kaidzu S, Takai Y, Ohira A, et al. LOXL1 variants in elderly Japanese patients with exfoliation syndrome/glaucoma, primary open-angle glaucoma, normal tension glaucoma, and cataract. Molecular vision. 2008;14:1898–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. • Li Z, Wang Z, Lee MC, Zenkel M, Peh E, Ozaki M, et al. Association of rare CYP39A1 variants with exfoliation syndrome involving the anterior chamber of the eye. JAMA. 2021;325(8):753–64. https://doi.org/10.1001/jama.2021.0507In a whole exome sequencing study, CYP39A1 was identified as a rare variant for XFS; however, the frequency of cases with this variant was low.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hauser MA, Aboobakar IF, Liu Y, Miura S, Whigham BT, Challa P, et al. Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus. Hum Mol Genet. 2015;24(22):6552–63. https://doi.org/10.1093/hmg/ddv347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zadravec P, Melzer B, Schimmel M, Tamm ER. High amounts of Lysyl oxidase-like protein-1 in the aqueous humor of transgenic mice do not cause ultrastructural changes of zonular fibers and ciliary body. Investigative Ophthalmology & Visual Science. 2014;55(13):5661.

    Google Scholar 

  55. Pasquale LR, Jiwani AZ, Zehavi-Dorin T, Majd A, Rhee DJ, Chen T, et al. Solar exposure and residential geographic history in relation to exfoliation syndrome in the United States and Israel. JAMA Ophthalmol. 2014;132(12):1439–45. https://doi.org/10.1001/jamaophthalmol.2014.3326.

    Article  PubMed  PubMed Central  Google Scholar 

  56. •• Laville V, Kang JH, Cousins CC, Iglesias AI, Nagy R, Cooke Bailey JN, et al. Genetic correlations between diabetes and glaucoma: an analysis of continuous and dichotomous phenotypes. American Journal of Ophthalmology. 2019;206:245–55. https://doi.org/10.1016/j.ajo.2019.05.015Genetic correlation studies have established IOP and VCDR as true endophenotypes of POAG, which has aided identification of further genes associated with POAG.

  57. Ozel AB, Moroi SE, Reed DM, Nika M, Schmidt CM, Akbari S, et al. Genome-wide association study and meta-analysis of intraocular pressure. Hum Genet. 2014;133(1):41–57. https://doi.org/10.1007/s00439-013-1349-5.

    Article  CAS  PubMed  Google Scholar 

  58. van Koolwijk LM, Ramdas WD, Ikram MK, Jansonius NM, Pasutto F, Hysi PG, et al. Common genetic determinants of intraocular pressure and primary open-angle glaucoma. PLoS Genet. 2012;8(5):e1002611. https://doi.org/10.1371/journal.pgen.1002611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen F, Klein AP, Klein BE, Lee KE, Truitt B, Klein R, et al. Exome array analysis identifies CAV1/CAV2 as a susceptibility locus for intraocular pressure. Invest Ophthalmol Vis Sci. 2014;56(1):544–51. https://doi.org/10.1167/iovs.14-15204.

    Article  CAS  PubMed  Google Scholar 

  60. •• Khawaja AP, Cooke Bailey JN, Wareham NJ, Scott RA, Simcoe M, Igo RP Jr, et al. Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. Nat Genet. 2018;50(6):778–82. https://doi.org/10.1038/s41588-018-0126-868 novel loci were found to be significantly associated with IOP in this GWAS, including loci implicated in ANG-TEK signaling which could be a thereapeutic target of interest.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. •• Gao XR, Huang H, Nannini DR, Fan F, Kim H. Genome-wide association analyses identify new loci influencing intraocular pressure. Hum Mol Genet. 2018;27(12):2205–13. https://doi.org/10.1093/hmg/ddy111This GWAS identified 103 novel IOP-related loci associated with POAG, which included pleiotropic genes that may be involved in POAG pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Springelkamp H, Iglesias AI, Mishra A, Höhn R, Wojciechowski R, Khawaja AP, et al. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum Mol Genet. 2017;26(2):438–53. https://doi.org/10.1093/hmg/ddw399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. •• Bonnemaijer PWM, Leeuwen EM, Iglesias AI, Gharahkhani P, Vitart V, Khawaja AP, et al. Multi-trait genome-wide association study identifies new loci associated with optic disc parameters. Communications Biology. 2019;2(1):435. https://doi.org/10.1038/s42003-019-0634-9This study used a novel multi-trait analysis in GWAS to identify two novel risk loci associated with POAG.

    Article  PubMed  PubMed Central  Google Scholar 

  64. •• Asefa NG, Neustaeter A, Jansonius NM, Snieder H. Heritability of glaucoma and glaucoma-related endophenotypes: systematic review and meta-analysis. Survey of Ophthalmology. 2019;64(6):835–51. https://doi.org/10.1016/j.survophthal.2019.06.002This meta-analysis provides the latest heritability estimates for POAG and its associated endophenotypes.

  65. •• Craig JE, Han X, Qassim A, Hassall M, Cooke Bailey JN, Kinzy TG, et al. Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nat Genet. 2020;52(2):160–6. https://doi.org/10.1038/s41588-019-0556-yThis study identified 49 novel loci associated with VCDR and also developed a PRS that found significantly increased odds of advanced POAG stages of glaucoma for individuals who were in the highest risk percentile.

  66. •• Qassim A, Souzeau E, Siggs OM, Hassall MM, Han X, Griffiths HL, et al. An intraocular pressure polygenic risk score stratifies multiple primary open-angle glaucoma parameters including treatment intensity. Ophthalmology. 2020;127(7):901–7 This study highlights the future utility of a PRS in clinical practice, by demonstrating that those in the highest PRS quintile had higher IOP recordings compared to those in the lowest quintile.

  67. •• Mabuchi F, Mabuchi N, Sakurada Y, Yoneyama S, Kashiwagi K, Iijima H, et al. Genetic variants associated with the onset and progression of primary open-angle glaucoma. American Journal of Ophthalmology. 2020;215:135–40. https://doi.org/10.1016/j.ajo.2020.03.014This study identified certain risk factors related to development of POAG based on an IOP-related and non-IOP-related PRS.

    Article  CAS  PubMed  Google Scholar 

  68. Lei Y, Song M, Wu J, Xing C, Sun X. eNOS activity in CAV1 knockout mouse eyes. Invest Ophthalmol Vis Sci. 2016;57(6):2805–13. https://doi.org/10.1167/iovs.15-18841.

    Article  CAS  PubMed  Google Scholar 

  69. Elliott MH, Ashpole NE, Gu X, Herrnberger L, McClellan ME, Griffith GL, et al. Caveolin-1 modulates intraocular pressure: implications for caveolae mechanoprotection in glaucoma. Sci Rep. 2016;6:37127. https://doi.org/10.1038/srep37127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gao S, Jakobs TC. Mice homozygous for a deletion in the glaucoma susceptibility locus INK4 show increased vulnerability of retinal ganglion cells to elevated intraocular pressure. Am J Pathol. 2016;186(4):985–1005. https://doi.org/10.1016/j.ajpath.2015.11.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chintalapudi SR, Maria D, Di Wang X, Bailey JNC, Allingham R, Brilliant M, et al. Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility. Nat Commun. 2017;8(1):1755. https://doi.org/10.1038/s41467-017-00837-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stein JD, Pasquale LR, Talwar N, Kim DS, Reed DM, Nan B, et al. Geographic and climatic factors associated with exfoliation syndrome. Arch Ophthalmol. 2011;129(8):1053–60. https://doi.org/10.1001/archophthalmol.2011.191.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wiggs JL, Pawlyk B, Connolly E, Adamian M, Miller JW, Pasquale LR, et al. Disruption of the blood-aqueous barrier and lens abnormalities in mice lacking lysyl oxidase-like 1 (LOXL1). Invest Ophthalmol Vis Sci. 2014;55(2):856–64. https://doi.org/10.1167/iovs.13-13033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Want A, Gillespie SR, Wang Z, Gordon R, Iomini C, Ritch R, et al. Autophagy and mitochondrial dysfunction in tenon fibroblasts from exfoliation glaucoma patients. PLoS One. 2016;11(7):e0157404. https://doi.org/10.1371/journal.pone.0157404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Trantow CM, Mao M, Petersen GE, Alward EM, Alward WL, Fingert JH, et al. Lyst mutation in mice recapitulates iris defects of human exfoliation syndrome. Invest Ophthalmol Vis Sci. 2009;50(3):1205–14. https://doi.org/10.1167/iovs.08-2791.

    Article  PubMed  Google Scholar 

Download references

Funding

This work is supported by an unrestricted grant from Research to Prevent Blindness, NYC. Dr. Pasquale is supported by NEI R01EY015473.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis R. Pasquale.

Ethics declarations

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Diagnosis and Monitoring of Glaucoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, J.H., Pasquale, L.R. A Comparison of Genomic Advances in Exfoliation Syndrome and Primary Open-Angle Glaucoma. Curr Ophthalmol Rep 9, 96–106 (2021). https://doi.org/10.1007/s40135-021-00270-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-021-00270-4

Keywords

Navigation