Skip to main content

Advertisement

Log in

Genome-wide association study and meta-analysis of intraocular pressure

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Elevated intraocular pressure (IOP) is a major risk factor for glaucoma and is influenced by genetic and environmental factors. Recent genome-wide association studies (GWAS) reported associations with IOP at TMCO1 and GAS7, and with primary open-angle glaucoma (POAG) at CDKN2B-AS1, CAV1/CAV2, and SIX1/SIX6. To identify novel genetic variants and replicate the published findings, we performed GWAS and meta-analysis of IOP in >6,000 subjects of European ancestry collected in three datasets: the NEI Glaucoma Human genetics collaBORation, GLAUcoma Genes and ENvironment study, and a subset of the Age-related Macular Degeneration-Michigan, Mayo, AREDS and Pennsylvania study. While no signal achieved genome-wide significance in individual datasets, a meta-analysis identified significant associations with IOP at TMCO1 (rs7518099-G, p = 8.0 × 10−8). Focused analyses of five loci previously reported for IOP and/or POAG, i.e., TMCO1, CDKN2B-AS1, GAS7, CAV1/CAV2, and SIX1/SIX6, revealed associations with IOP that were largely consistent across our three datasets, and replicated the previously reported associations in both effect size and direction. These results confirm the involvement of common variants in multiple genomic regions in regulating IOP and/or glaucoma risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson DR (2003) Collaborative normal tension glaucoma study. Curr Opin Ophthalmol 14(2):86–90

    Article  PubMed  Google Scholar 

  • Anderson DR, Drance SM, Schulzer M (2003) Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol 136(5):820–829

    Article  PubMed  Google Scholar 

  • Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, Cherry JM, Snyder M (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22(9):1790–1797

    Article  CAS  PubMed  Google Scholar 

  • Brubaker RF (2004) Goldmann’s equation and clinical measures of aqueous dynamics. Exp Eye Res 78(3):633–637

    Article  CAS  PubMed  Google Scholar 

  • Burdon KP, Macgregor S, Hewitt AW, Sharma S, Chidlow G, Mills RA, Danoy P, Casson R, Viswanathan AC, Liu JZ, Landers J, Henders AK, Wood J, Souzeau E, Crawford A, Leo P, Wang JJ, Rochtchina E, Nyholt DR, Martin NG, Montgomery GW, Mitchell P, Brown MA, Mackey DA, Craig JE (2011) Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet 43(6):574–578

    Article  CAS  PubMed  Google Scholar 

  • Carbonaro F, Andrew T, Mackey DA, Spector TD, Hammond CJ (2008) Heritability of intraocular pressure: a classical twin study. Br J Ophthalmol 92(8):1125–1128

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Congdon NG, Wojciechowski R, Munoz B, Gilbert D, Chen P, Friedman DS, West SK (2005) Determinants and heritability of intraocular pressure and cup-to-disc ratio in a defined older population. Ophthalmology 112(7):1186–1191

    Article  PubMed Central  PubMed  Google Scholar 

  • Charlesworth J, Kramer PL, Dyer T, Diego V, Samples JR, Craig JE, Mackey DA, Hewitt AW, Blangero J, Wirtz MK (2010) The path to open-angle glaucoma gene discovery: endophenotypic status of intraocular pressure, cup-to-disc ratio, and central corneal thickness. Invest Ophthalmol Vis Sci 51(7):3509–3514

    Article  PubMed  Google Scholar 

  • Chen W, Stambolian D, Edwards AO, Branham KE, Othman M, Jakobsdottir J, Tosakulwong N, Pericak-Vance MA, Campochiaro PA, Klein ML, Tan PL, Conley YP, Kanda A, Kopplin L, Li Y, Augustaitis KJ, Karoukis AJ, Scott WK, Agarwal A, Kovach JL, Schwartz SG, Postel EA, Brooks M, Baratz KH, Brown WL et al (2010) Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci USA 107(16):7401–7406

    Article  CAS  PubMed  Google Scholar 

  • Cornelis MC, Agrawal A, Cole JW, Hansel NN, Barnes KC, Beaty TH, Bennett SN, Bierut LJ, Boerwinkle E, Doheny KF, Feenstra B, Feingold E, Fornage M, Haiman CA, Harris EL, Hayes MG, Heit JA, Hu FB, Kang JH, Laurie CC, Ling H, Manolio TA, Marazita ML, Mathias RA, Mirel DB et al (2010) The Gene, Environment Association Studies consortium (GENEVA): maximizing the knowledge obtained from GWAS by collaboration across studies of multiple conditions. Genet Epidemiol 34(4):364–372

    Article  PubMed Central  PubMed  Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55(4):997–1004

    Article  CAS  PubMed  Google Scholar 

  • Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851–861

    Article  CAS  PubMed  Google Scholar 

  • Freeman EE, Roy-Gagnon MH, Descovich D, Masse H, Lesk MR (2013) The heritability of glaucoma-related traits corneal hysteresis, central corneal thickness, intraocular pressure, and choroidal blood flow pulsatility. PLoS One 8(1):e55573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuoka S, Aihara M, Iwase A, Araie M (2008) Intraocular pressure in an ophthalmologically normal Japanese population. Acta Ophthalmol 86(4):434–439

    Article  PubMed  Google Scholar 

  • Giuffre G, Giammanco R, Dardanoni G, Ponte F (1995) Prevalence of glaucoma and distribution of intraocular pressure in a population. The Casteldaccia Eye Study. Acta Ophthalmol Scand 73(3):222–225

    Article  CAS  PubMed  Google Scholar 

  • Hashemi H, Kashi AH, Fotouhi A, Mohammad K (2005) Distribution of intraocular pressure in healthy Iranian individuals: the Tehran Eye Study. Br J Ophthalmol 89(6):652–657

    Article  CAS  PubMed  Google Scholar 

  • Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):701–713 (discussion 829–730)

    Article  PubMed  Google Scholar 

  • Klein BE, Klein R, Lee KE (2004) Heritability of risk factors for primary open-angle glaucoma: the Beaver Dam Eye Study. Invest Ophthalmol Vis Sci 45(1):59–62

    Article  PubMed  Google Scholar 

  • Kohlhaas M, Boehm AG, Spoerl E, Pursten A, Grein HJ, Pillunat LE (2006) Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry. Arch Ophthalmol 124(4):471–476

    Article  PubMed  Google Scholar 

  • Lee MK, Cho SI, Kim H, Song YM, Lee K, Kim JI, Kim DM, Chung TY, Kim YS, Seo JS, Ham DI, Sung J (2012) Epidemiologic characteristics of intraocular pressure in the Korean and Mongolian populations: the Healthy Twin and the GENDISCAN study. Ophthalmology 119(3):450–457

    Article  PubMed  Google Scholar 

  • Leske MC, Connell AM, Wu SY, Hyman L, Schachat AP (1997) Distribution of intraocular pressure. The Barbados Eye Study. Arch Ophthalmol 115(8):1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114(11):1965–1972

    Article  PubMed  Google Scholar 

  • Li M, Atmaca-Sonmez P, Othman M, Branham KE, Khanna R, Wade MS, Li Y, Liang L, Zareparsi S, Swaroop A, Abecasis GR (2006) CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat Genet 38(9):1049–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Wong W, Lamoureux EL, Wong TY (2012) Are linear regression techniques appropriate for analysis when the dependent (outcome) variable is not normally distributed? Invest Ophthalmol Vis Sci 53(6):3082–3083

    Article  PubMed  Google Scholar 

  • Liton PB, Luna C, Challa P, Epstein DL, Gonzalez P (2006) Genome-wide expression profile of human trabecular meshwork cultured cells, nonglaucomatous and primary open angle glaucoma tissue. Mol Vis 12:774–790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu JH, Realini T, Weinreb RN (2011) Asymmetry of 24-hour intraocular pressure reduction by topical ocular hypotensive medications in fellow eyes. Ophthalmology 118(10):1995–2000

    Article  PubMed  Google Scholar 

  • Miglior S, Torri V, Zeyen T, Pfeiffer N, Vaz JC, Adamsons I (2007) Intercurrent factors associated with the development of open-angle glaucoma in the European glaucoma prevention study. Am J Ophthalmol 144(2):266–275

    Article  PubMed  Google Scholar 

  • Moroi SE, Raoof DA, Reed DM, Zöllner S, Qin Z, Richards JE (2009) Progress toward personalized medicine for glaucoma. Expert Rev Ophthalmol 4(2):145–161

    Article  PubMed Central  PubMed  Google Scholar 

  • Musch DC, Gillespie BW, Niziol LM, Lichter PR, Varma R (2011) Intraocular pressure control and long-term visual field loss in the Collaborative Initial Glaucoma Treatment Study. Ophthalmology 118(9):1766–1773

    Article  PubMed Central  PubMed  Google Scholar 

  • NEIGHBORHOOD Consortium (2013). http://glaucomagenetics.org/

  • Nickells RW (2012) The cell and molecular biology of glaucoma: mechanisms of retinal ganglion cell death. Invest Ophthalmol Vis Sci 53(5):2476–2481

    Article  CAS  PubMed  Google Scholar 

  • Parssinen O, Era P, Tolvanen A, Kaprio J, Koskenvuo M, Rantanen T (2007) Heritability of intraocular pressure in older female twins. Ophthalmology 114(12):2227–2231

    Article  PubMed  Google Scholar 

  • Pekmezci M, Chang ST, Wilson BS, Gordon MO, Bhorade AM (2011) Effect of measurement order between right and left eyes on intraocular pressure measurement. Arch Ophthalmol 129(3):276–281

    Article  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267

    Article  CAS  PubMed  Google Scholar 

  • Qureshi IA, Xi XR, Huang YB, Lu HJ, Wu XD, Shiarkar E (1996) Distribution of intraocular pressure among healthy Pakistani. Chin J Physiol 39(3):183–188

    CAS  PubMed  Google Scholar 

  • Sharma S, Burdon KP, Chidlow G, Klebe S, Crawford A, Dimasi DP, Dave A, Martin S, Javadiyan S, Wood JP, Casson R, Danoy P, Griggs K, Hewitt AW, Landers J, Mitchell P, Mackey DA, Craig JE (2012) Association of genetic variants in the TMCO1 gene with clinical parameters related to glaucoma and characterization of the protein in the eye. Invest Ophthalmol Vis Sci 53(8):4917–4925

    Article  CAS  PubMed  Google Scholar 

  • Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, Nishimura D, Clark AF, Nystuen A, Nichols BE, Mackey DA, Ritch R, Kalenak JW, Craven ER, Sheffield VC (1997) Identification of a gene that causes primary open angle glaucoma. Science 275(5300):668–670

    Article  CAS  PubMed  Google Scholar 

  • The AGIS Investigators (2000) The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 130(4):429–440

    Article  Google Scholar 

  • Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A, DeWan A, Sigurdsson A, Jonasdottir A, Gudjonsson SA, Magnusson KP, Stefansson H, Lam DS, Tam PO, Gudmundsdottir GJ, Southgate L, Burdon KP, Gottfredsdottir MS, Aldred MA, Mitchell P, St Clair D, Collier DA, Tang N, Sveinsson O, Macgregor S, Martin NG et al (2010) Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet 42(10):906–909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Valk R, Webers CA, Schouten JS, Zeegers MP, Hendrikse F, Prins MH (2005) Intraocular pressure-lowering effects of all commonly used glaucoma drugs: a meta-analysis of randomized clinical trials. Ophthalmology 112(7):1177–1185

    Article  PubMed  Google Scholar 

  • van Koolwijk LM, Despriet DD, van Duijn CM, Pardo Cortes LM, Vingerling JR, Aulchenko YS, Oostra BA, Klaver CC, Lemij HG (2007) Genetic contributions to glaucoma: heritability of intraocular pressure, retinal nerve fiber layer thickness, and optic disc morphology. Invest Ophthalmol Vis Sci 48(8):3669–3676

    Article  PubMed  Google Scholar 

  • van Koolwijk LM, Ramdas WD, Ikram MK, Jansonius NM, Pasutto F, Hysi PG, Macgregor S, Janssen SF, Hewitt AW, Viswanathan AC, ten Brink JB, Hosseini SM, Amin N, Despriet DD, Willemse-Assink JJ, Kramer R, Rivadeneira F, Struchalin M, Aulchenko YS, Weisschuh N, Zenkel M, Mardin CY, Gramer E, Welge-Lussen U, Montgomery GW et al (2012) Common genetic determinants of intraocular pressure and primary open-angle glaucoma. PLoS Genet 8(5):e1002611

    Article  PubMed Central  PubMed  Google Scholar 

  • Wiggs JL (2012) The cell and molecular biology of complex forms of glaucoma: updates on genetic, environmental, and epigenetic risk factors. Invest Ophthalmol Vis Sci 53(5):2467–2469

    Article  CAS  PubMed  Google Scholar 

  • Wiggs JL, Hauser MA, Abdrabou W, Allingham RR, Budenz DL, Delbono E, Friedman DS, Kang JH, Gaasterland D, Gaasterland T, Lee RK, Lichter PR, Loomis S, Liu Y, McCarty C, Medeiros FA, Moroi SE, Olson LM, Realini A, Richards JE, Rozsa FW, Schuman JS, Singh K, Stein JD, Vollrath D et al (2012a) The NEIGHBOR Consortium Primary Open-Angle Glaucoma Genome-wide Association Study: Rationale, Study Design, and Clinical Variables. J Glaucoma. doi:101097/IJG0b013e31824d4fd820120723

    Google Scholar 

  • Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM, Abdrabou W, Fan BJ, Wang DY, Brodeur W, Budenz DL, Caprioli J, Crenshaw A, Crooks K, Delbono E, Doheny KF, Friedman DS, Gaasterland D, Gaasterland T, Laurie C, Lee RK, Lichter PR, Loomis S, Liu Y, Medeiros FA et al (2012b) Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet 8(4):e1002654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26(17):2190–2191

    Article  CAS  PubMed  Google Scholar 

  • Wong TT, Wong TY, Foster PJ, Crowston JG, Fong CW, Aung T (2009) The relationship of intraocular pressure with age, systolic blood pressure, and central corneal thickness in an Asian population. Invest Ophthalmol Vis Sci 50(9):4097–4102

    Article  PubMed  Google Scholar 

  • Xin B, Puffenberger EG, Turben S, Tan H, Zhou A, Wang H (2010) Homozygous frameshift mutation in TMCO1 causes a syndrome with craniofacial dysmorphism, skeletal anomalies, and mental retardation. Proc Natl Acad Sci USA 107(1):258–263

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Mo D, Cong P, He Z, Ling F, Li A, Niu Y, Zhao X, Zhou C, Chen Y (2010) Molecular cloning, expression patterns and subcellular localization of porcine TMCO1 gene. Mol Biol Rep 37(3):1611–1618

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Xiang F, Huang W, Huang G, Yin Q, He M (2009) Distribution and heritability of intraocular pressure in Chinese children: the Guangzhou twin eye study. Invest Ophthalmol Vis Sci 50(5):2040–2043

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge EY022124 (S.E.M.); 2RO1HL039693 and R01HL112642 (J.Z.L., A.B.O); EY011671, EY09580 (J.E.R.); EY007003 (Michigan Core Center for Vision Research); HG005259-01, 3R01EY015872-05S1, EY015872, EY010886, EY009847 (J.W.); HG004728, EY015473 (L.P.); EY016862, EY007758 (J.R.H.); HG002651 (G.A.); EY009149 (P.R.L.); EY006827 (D.G.); EY016862, EY016862, HL084729, HG002651 (G.R.A.); CA87969, CA49449, CA55075, EY09611 (J.H.K.); T32EY021453 (B.Y.); 3R01EY019126-02S1, EY13315 (M.A.H.); EY015543 (R.R.A.); U01-HG004424 (Broad Institute); HHSN268200782096C; RC1HG005334, U54HG004570 (ENCODE); HG004608 (C.M.M.); HG006389 (C.M.M., M.H.B); EY008208 (F.A.M.); EY015682 (A.R.); EY144428, EY144448, EY18660 (K.Z.); HL073389 (E.H.); U01 HG004446 (C.L.); HG004608 (C.M.); EY008208 (F.A.M.); EY012118, EY012118 (M.A.P–V.); EY015682 (A.R.); EY013178 (J.S.S.); RR015574; EY011008 (L.M.Z.);

Other supports included funding from University of Michigan Glaucoma Research Center (S.E.M., J.E.R., J.Z.L.); Ellison Medical Foundation (J.Z.L.); Harvard Glaucoma Center for Excellence, and the Margolis Fund (J.W. and L.P.); Research to Prevent Blindness (A.S., D.C.M., J.W., L.P., J.R.H., and J.E.R.); the Glaucoma Research Foundation (S.E.M., Y.L.); the Glaucoma Foundation (Y.L.); American Health Assistance Foundation (Y.L., J.E.R., J.R.H., A.S.); Elmer and Silvia Sramek Foundation (J.R.H., A.S.); Foundation Fighting Blindness (J.R.H., A.S.); the Macula Vision Research Foundation (J.R.H., A.S.); the Pew Charitable Trusts (J.R.H., A.S.); the Casey Macular Degeneration Center Fund (J.R.H., A.S.); the Marion W. and Edward F. Knight AMD Fund (J.R.H., A.S.); the Harold and Pauline Price Foundation, National Genotyping Centre of Spain (J.R.H., A.S.).

A list of the GLAUGEN collaborators is found at The Primary Open-Angle Glaucoma Genes and Environment (GLAUGEN) Study listing on dbGAP, study Accession: phs000308.v1.p1. www.ncbi.nlm.nih.gov/projects/gap, December 21, 2010. A list of the NEIGHBOR investigators is found at the NEIGHBORHOOD Consortium http://glaucomagenetics.org/members (accessed March 18, 2013).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Sayoko E. Moroi or Jun Z. Li.

Additional information

NEIGHBOR Consortium: http://glaucomagenetics.org/.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1179 kb)

Supplementary Fig. 1 Left panels: IOP distributions for controls (red), untreated IOP (blue), and extrapolated IOP (green) in (a) NEIGHBOR (n = 4,088), (b) GLAUGEN (n = 1,153), (c) AMD-MMAP MI (n = 995). Right panels: IOP histogram for the entire study, combining the three groups in the left panels, its density plot (red), and the theoretical normal distribution (black).

Supplementary Fig. 2 GWAS results for the three datasets (a) -log10 (p value) plot of ~ 507 K SNPs in NEIGHBOR. The horizontal line marks the 9.9 × 10−8 threshold of genome-wide significance. (b) Quantile–Quantile plot of observed vs. expected -log10 (p value) for IOP in NEIGHBOR. (c) -log10 (p value) plot of ~484 K SNPs in GLAUGEN. The horizontal line marks the 1.1 × 10−7 threshold of genome-wide significance (d) −log10 (p value) plot of ~2.4 million SNPs in AMD-MMAP MI. The horizontal line marks the 2.08 × 10−8 threshold of genome-wide significance

Supplementary Fig. 3 NEIGHBOR seven-site meta-analysis (~507 k SNPs) (a) −log10 (p value) plot. The horizontal line marks the 1.1 × 10−7 threshold of genome-wide significance (b) Quantile–Quantile plot of the seven-site meta-analysis versus the original NEIGHBOR GWAS

Supplementary Fig. 4 Comparison of effect size and direction of the top SNPs in TMCO1, CDKN2B-AS1, GAS7, CAV1/CAV2 and SIX1/SIX6 in the overall meta-analysis across Sites 1–6 and 8 in NEIGHBOR. Shown are forest plots for the seven sites, seven-site meta-analysis, and original NEIGHBOR GWAS for (a) TMCO1 SNP, rs7518099(G) (b) CDKN2B-AS1 SNP, rs1412829(G) (c) GAS7 SNP, rs121502849(A) (d) CAV1/CAV2 SNP, rs4236601(A) (e) SIX1/SIX6 SNP, rs10483727(A)

Supplementary Fig. 5 Gender-specific analyses in NEIGHBOR (a) −log10 (p value) plot using only males (n = 1,905). The horizontal line marks the 9.9 × 10−8 threshold (b) −log10 (p value) plot using only females (N = 2,183)

Supplementary Fig. 6 Comparison of effect size and direction of the top SNPs in TMCO1, CDKN2B-AS1, GAS7, CAV1/CAV2 and SIX1/SIX6 by gender. Shown are forest plots for male-only, female-only, and overall for (a) TMCO1 SNP, rs7518099(G), (b) CDKN2B-AS1 SNP, rs1412829(G), (c) GAS7 SNP, rs12150284(A), (d) CAV1/CAV2 SNP, rs4236601(A), (e) SIX1/SIX6 SNP, rs10483727(A)

Supplementary Fig. 7 Age-specific analyses in NEIGHBOR. (a) The distributions of IOP are similar across the four age groups. (b) −log10 (p value) plot in the youngest group (n = 1,022). The horizontal line marks the 9.9 × 10−8 threshold of genome-wide significance. (c) Comparison of effect size and direction of the top SNP at 18q22 (rs1876486) across four age groups

Supplementary Fig. 8 Comparison of effect size and direction of the top SNPs in TMCO1, CDKN2B-AS1, GAS7, CAV1/CAV2 and SIX1/SIX6 across four age groups, and the original overall results. (a) TMCO1 SNP, rs7518099(G). (b) CDKN2B-AS1 SNP, rs1412829(G). (c) GAS7 SNP, rs12150284(A). (d) CAV1/CAV2 SNP, rs4236601(A). (e) SIX1/SIX6 SNP, rs10483727(A)

Supplementary Fig. 9 Effect of adjusting for central corneal thickness (CCT) in NEIGHBOR. Analysis of ~507 k SNPs with 4,088 individuals, with IOP adjusted by CCT (for cases with CCT available). (a) −log10 (p value) plot. The horizontal line marks the 9.9 × 10−8 threshold of genome-wide significance. (b) Log-scatter plot comparison of the observed −log10 (p value) with and without adjusting by CCT

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozel, A.B., Moroi, S.E., Reed, D.M. et al. Genome-wide association study and meta-analysis of intraocular pressure. Hum Genet 133, 41–57 (2014). https://doi.org/10.1007/s00439-013-1349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1349-5

Keywords

Navigation