Skip to main content
Log in

Four-Dimensional Computed Tomography (4DCT) in Radiation Oncology: A Practical Overview

  • Computed Tomography (Savvas Nicolaou and Mohammed F. Mohammed, Section Editors)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

It has been 20 years since four-dimensional computed tomography (4DCT) was adopted in radiation oncology. By acquiring respiratory-correlated CT images, 4DCT allows characterization of tumour motion during radiotherapy target delineation. This technology has improved tumour delineation accuracy, in fact, it is now considered essential for highly conformal, high radiation, and precise radiotherapy treatment delivery. Nevertheless, due to the sampling of irregular patient breathing cycles, 4DCT suffers from image artefacts that can compromise tumour delineation accuracy. Addressing this challenge has been the driving motivation behind the latest advancements in 4DCT implementations. The purpose of this review is to provide a practical overview on 4DCT technology, its developments, and how it is used in radiation oncology.

Recent Findings

The most significant hardware advancement in helical CT scanner technology has been the increase of CT-slices from 16 to 256/320-slice, allowing faster scan times. In terms of software developments, reconstruction algorithms have greatly improved, and a multitude of artefact reduction techniques has been demonstrated to be beneficial—though not all are commercially available. Nowadays, it is possible to significantly reduce artefacts to nearly non-discernible levels. This is achievable through recent innovations in 4DCT which merge advanced hardware and software tools to implement patient-specific models that account for breathing irregularities to efficiently acquire high-integrity CT data.

Summary

This article provides a practical review of how 4DCT technology has evolved in radiation oncology, from both a technical and logistical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently have been highlighted as: • Of importance •• Of major importance

  1. Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822–34. https://doi.org/10.1016/S0360-3016(02)02803-1.

    Article  PubMed  Google Scholar 

  2. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76 a. Med Phys. 2006;33(10):3874–900.

    Article  PubMed  Google Scholar 

  3. ICRU Report 50. Prescribing, Recording and Reporting Photon Beam Therapy. International Commission on Radiation Units and Measurements; 1978.

  4. ICRU Report 62, Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU 50). International Commission on Radiation Units and Measurements. 1993.

  5. Hounsfield GN. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol. 1973;46(552):1016–22.

    Article  CAS  PubMed  Google Scholar 

  6. Benchetrit G. Breathing pattern in humans: diversity and individuality. Respir Physiol. 2000;122(2–3):123–9. https://doi.org/10.1016/S0034-5687(00)00154-7.

    Article  CAS  PubMed  Google Scholar 

  7. Flohr T. CT Systems. Curr Radiol Rep. 2013;1(1):52–63. https://doi.org/10.1007/s40134-012-0005-5.

    Article  Google Scholar 

  8. Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology. 1990;176(1):181–3. https://doi.org/10.1148/radiology.176.1.2353088.

    Article  CAS  PubMed  Google Scholar 

  9. Goldman LW. Principles of CT: multislice CT. J Nucl Med Technol. 2008;36(2):57–68.

    Article  PubMed  Google Scholar 

  10. Hugo GD, Rosu M. Advances in 4D radiation therapy for managing respiration: Part I - 4D imaging. Z Med Phys. 2012;22(4):258–71. https://doi.org/10.1016/j.zemedi.2012.06.009.

    Article  PubMed  Google Scholar 

  11. Kwong Y, Mel AO, Wheeler G, Troupis JM. Four-dimensional computed tomography (4DCT): a review of the current status and applications. J Med Imaging Radiat Oncol. 2015;59(5):545–54. https://doi.org/10.1111/1754-9485.12326.

    Article  PubMed  Google Scholar 

  12. Ropers D, Baum U, Pohle K, et al. Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation. 2003;107(5):664–6.

    Article  PubMed  Google Scholar 

  13. Nikolaou K, Flohr T, Knez A, et al. Advances in cardiac CT imaging: 64-slice scanner. Int J Cardiovasc Imaging. 2004;20:535–40.

    Article  PubMed  Google Scholar 

  14. Hsiao EM, Rybicki FJ, Steigner M. CT coronary angiography: 256-slice and 320-detector row scanners. Curr Cardiol Rep. 2010;12:68–75.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ford EC, Mageras GS, Yorke E, Rosenzweig KE, Wagman R, Ling CC. Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging. Int J Radiat Oncol Biol Phys. 2002;52(2):522–31. https://doi.org/10.1016/S0360-3016(01)02681-5.

    Article  CAS  PubMed  Google Scholar 

  16. Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Biol Phys Med Biol. 2003;48:45–62.

    Article  CAS  PubMed  Google Scholar 

  17. Low DA, Nystrom M, Kalinin E, et al. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. Med Phys. 2003;30(6):1254–63. https://doi.org/10.1118/1.1576230.

    Article  PubMed  Google Scholar 

  18. Castillo SJ, Castillo R, Castillo E, et al. Evaluation of 4D CT acquisition methods designed to reduce artifacts. J Appl Clin Med Phys. 2015;16(2):23–32. https://doi.org/10.1120/jacmp.v16i2.4949.

    Article  PubMed Central  Google Scholar 

  19. •Werner R, Sentker T, Madesta F, Gauer T, Hofmann C. Intelligent 4D CT sequence scanning (i4DCT): Concept and performance evaluation. Med Phys. 2019;46(8):3462–3474. doi:https://doi.org/10.1002/mp.13632Importance: This study reports on the first scanner implementation of an autmated breathing signal-guided 4DCT scanning technique using a clinical CT scacnner, and shows how this technique can reduce 4DCT motion artifacts caused by irregular breathing

  20. De Oliveira DS, Rancoule C, He MY, et al. Use of 4D-CT for radiotherapy planning and reality in France: data from a national survey. Cancer/Radiotherapie. 2019;23(5):395–400. https://doi.org/10.1016/j.canrad.2019.02.006.

    Article  Google Scholar 

  21. Erridge SC, Seppenwoolde Y, Muller SH, et al. Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer. Radiother Oncol. 2003;66(1):75–85. https://doi.org/10.1016/S0167-8140(02)00287-6.

    Article  PubMed  Google Scholar 

  22. Shimohigashi Y, Toya R, Saito T, et al. Tumor motion changes in stereotactic body radiotherapy for liver tumors: an evaluation based on four-dimensional cone-beam computed tomography and fiducial markers. Radiat Oncol. 2017;12(1):61. https://doi.org/10.1186/s13014-017-0799-7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heerkens HD, Van Vulpen M, Van Den Berg CAT, et al. MRI-based tumor motion characterization and gating schemes for radiation therapy of pancreatic cancer. Radiother Oncol. 2014;111(2):252–7. https://doi.org/10.1016/j.radonc.2014.03.002.

    Article  PubMed  Google Scholar 

  24. Martin A, Gaya A. Stereotactic body radiotherapy: a review. Clin Oncol. 2010;22(3):157–72.

    Article  CAS  Google Scholar 

  25. Pan T, Lee TY, Rietzel E, Chen GTY. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys. 2004;31(2):333–40. https://doi.org/10.1118/1.1639993.

    Article  PubMed  Google Scholar 

  26. Parker DL. Optimal short scan convolution reconstruction for fan beam CT. Med Phys. 1982;9(2):254–7.

    Article  CAS  PubMed  Google Scholar 

  27. Pan T. Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT. Med Phys. 2005;32(2):627–34. https://doi.org/10.1118/1.1855013.

    Article  PubMed  Google Scholar 

  28. Heinz C, Reiner M, Belka C, Walter F, Söhn M. Technical evaluation of different respiratory monitoring systems used for 4D CT acquisition under free breathing. J Appl Clin Med Phys. 2015;16(2):334–49. https://doi.org/10.1120/jacmp.v16i2.4917.

    Article  PubMed Central  Google Scholar 

  29. Keall PJ, Vedam SS, George R, Williamson JF. Respiratory regularity gated 4D CT acquisition: concepts and proof of principle. Australas Phys Eng Sci Med. 2007;30(3):211–20. https://doi.org/10.1007/BF03178428.

    Article  CAS  PubMed  Google Scholar 

  30. Lu W, Low DA, Parikh PJ, et al. Comparison of spirometry and abdominal height as four-dimensional computed tomography metrics in lung. Med Phys. 2005;32(7):2351–7. https://doi.org/10.1118/1.1935776.

    Article  PubMed  Google Scholar 

  31. Sharp GC, Jiang SB, Shimizu S, Shirato H. Prediction of respiratory tumour motion for real-time image-guided radiotherapy. Phys Med Biol. 2004;49(3):425–40. https://doi.org/10.1088/0031-9155/49/3/006.

    Article  PubMed  Google Scholar 

  32. Shirato H, Shimizu S, Kitamura K, et al. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys. 2000;48(2):435–42.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Q, Pevsner A, Hertanto A, et al. A patient-specific respiratory model of anatomical motion for radiation treatment planning. Med Phys. 2007;34(12):4772–81.

    Article  PubMed  Google Scholar 

  34. Low DA, Parikh PJ, Lu W, et al. Novel breathing motion model for radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(3):921–9.

    Article  PubMed  Google Scholar 

  35. McClelland JR, Blackall JM, Tarte S, et al. A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy. Med Phys. 2006;33(9):3348–58.

    Article  PubMed  Google Scholar 

  36. Sprouts DA. Comparison of device-based and deviceless 4DCT reconstruction. Masters of Science Thesis. San Diego State University. Published online 2017.

  37. Wulfhekel E, Grohmann C, Gauer T, Werner R. EP-1743: Compilation of a database for illustration and automated detection of 4DCT motion artifacts. Radiother Oncol. 2014;111:S266.

    Article  Google Scholar 

  38. Yamamoto T, Langner U, Loo BW Jr, Shen J, Keall PJ. Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients. Int J Radiat Oncl Biol Phys. 2008;72(4):1250–8. https://doi.org/10.1016/j.ijrobp.2008.06.1937.Retrospective.

    Article  Google Scholar 

  39. Pan CH, Shiau AC, Li KC, Hsu SH, Liang JA. The irregular breathing effect on target volume and coverage for lung stereotactic body radiotherapy. J Appl Clin Med Phys. 2019;20(7):109–20. https://doi.org/10.1002/acm2.12663.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Watkins WT, Li R, Lewis J, et al. Patient-specific motion artifacts in 4DCT. Med Phys. 2010;37(6Part1):2855–61.

    Article  PubMed  Google Scholar 

  41. Persson GF, Nygaard DE, Brink C, et al. Deviations in delineated GTV caused by artefacts in 4DCT. Radiother Oncol. 2010;96(1):61–6. https://doi.org/10.1016/j.radonc.2010.04.019.

    Article  PubMed  Google Scholar 

  42. Pan T, Sun X, Luo D. Improvement of the cine-CT based 4D-CT imaging. Med Phys. 2007;34(11):4499–503. https://doi.org/10.1118/1.2794225.

    Article  PubMed  Google Scholar 

  43. Langner UW, Keall PJ. Quantification of artifact reduction with real-time cine four-dimensional computed tomography acquisition methods. Int J Radiat Oncol Biol Phys. 2010;76(4):1242–50. https://doi.org/10.1016/j.ijrobp.2009.07.013.

    Article  PubMed  Google Scholar 

  44. Lu W, Parikh PJ, Hubenschmidt JP, Bradley JD, Low DA. A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT. Med Phys. 2006;33(8):2964–74. https://doi.org/10.1118/1.2219772.

    Article  PubMed  Google Scholar 

  45. Vedam SS, Keall PJ, Kini VR, Mohan R. Determining parameters for respiration-gated radiotherapy. Med Phys. 2001;28(10):2139–46. https://doi.org/10.1118/1.1406524.

    Article  CAS  PubMed  Google Scholar 

  46. Persson GF, Nygaard DE, Olsen M, et al. Can audio coached 4D CT emulate free breathing during the treatment course? Acta Oncol (Madr). 2008;47(7):1397–405. https://doi.org/10.1080/02841860802256442.

    Article  Google Scholar 

  47. Haasbeek CJA, Spoelstra FOB, Lagerwaard FJ, et al. Impact of audio-coaching on the position of lung tumors. Int J Radiat Oncol Biol Phys. 2008;71(4):1118–23. https://doi.org/10.1016/j.ijrobp.2007.11.061.

    Article  PubMed  Google Scholar 

  48. Bouilhol G, Ayadi M, Pinho R, Rit S, Sarrut D. Motion artifact detection in four-dimensional computed tomography images. J Phys Conf Ser. 2014. https://doi.org/10.1088/1742-6596/489/1/012024.

    Article  Google Scholar 

  49. Ezhil M, Vedam S, Choi B, Starkschall G, Balter P, Chang J. Determination of patient-specific intra-fractional respiratory motion envelope of tumors from maximum intensity projections of 4D CT datasets. Int J Radiat Oncol Biol Phys. 2007;69(3):S484–5.

    Article  Google Scholar 

  50. Rietzel E, Liu AK, Doppke KP, et al. Design of 4D treatment planning target volumes. Int J Radiat Oncol Biol Phys. 2006;66(1):287–95.

    Article  PubMed  Google Scholar 

  51. Allen AM, Siracuse KM, Hayman JA, Balter JM. Evaluation of the influence of breathing on the movement and modeling of lung tumors. Int J Radiat Oncol Biol Phys. 2004;58(4):1251–7.

    Article  PubMed  Google Scholar 

  52. Wolthaus JWH, Schneider C, Sonke J-J, et al. Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. Int J Radiat Oncol Biol Phys. 2006;65(5):1560–71.

    Article  PubMed  Google Scholar 

  53. Underberg RWM, Lagerwaard FJ, Slotman BJ, Cuijpers JP, Senan S. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys. 2005;63(1):253–60.

    Article  PubMed  Google Scholar 

  54. •Ball HJ, Santanam L, Senan S, Tanyi JA, van Herk M, Keall PJ. Results from the AAPM Task Group 324 respiratory motion management in radiation oncology survey. J Appl Clin Med Phys. 2022;23(11):1–11. doi:https://doi.org/10.1002/acm2.13810Importance: This survey includes information on common practices and uses of 4DCT in radiation oncology, such as information on which 4DCT image sets are used for target delineation, the frequency of re-scanned patients, the frequency of quality assurance tests, and the use of contrast with 4DCT imaging

  55. Muirhead R, McNee SG, Featherstone C, Moore K, Muscat S. Use of maximum intensity projections (MIPs) for target outlining in 4DCT radiotherapy planning. J Thorac Oncol. 2008;3(12):1433–8. https://doi.org/10.1097/JTO.0b013e31818e5db7.

    Article  PubMed  Google Scholar 

  56. Wong Yuzhen N, Barrett S. A review of automatic lung tumour segmentation in the era of 4DCT. Reports Pract Oncol Radiother. 2019;24(2):208–20. https://doi.org/10.1016/j.rpor.2019.01.003.

    Article  Google Scholar 

  57. Després P, Gaede S. COMP report: CPQR technical quality control guidelines for CT simulators. J Appl Clin Med Phys. 2018;19(2):12–7. https://doi.org/10.1002/acm2.12213.

    Article  PubMed  Google Scholar 

  58. Jiang SB, Wolfgang J, Mageras GS. Quality assurance challenges for motion-adaptive radiation therapy: gating, breath holding, and four-dimensional computed tomography. Int J Radiat Oncol Biol Phys. 2008;71(1 SUPPL.):103–7. https://doi.org/10.1016/j.ijrobp.2007.07.2386.

    Article  Google Scholar 

  59. Bakkali Tahiri J, Kyndt M, Dhont J, et al. A comprehensive quality assurance program for four-dimensional computed tomography in radiotherapy. Phys Imaging Radiat Oncol. 2023;27: 100475. https://doi.org/10.1016/j.phro.2023.100475.

    Article  PubMed  PubMed Central  Google Scholar 

  60. •Burghelea M, Bakkali Tahiri J, Dhont J, et al. Results of a multicenter 4D computed tomography quality assurance audit: Evaluating image accuracy and consistency. Phys Imaging Radiat Oncol. 2023;28:100479. doi:https://doi.org/10.1016/j.phro.2023.100479Importance: This study reports on a multi-institutional multi-vendor 4DCT audit conducted to asses the accuracy and variability in 4DCT image sets

  61. ••Sentker T, Schmidt V, Ozga AK, et al. 4D CT image artifacts affect local control in SBRT of lung and liver metastases. Radiother Oncol. 2020;148:229–234. doi:https://doi.org/10.1016/j.radonc.2020.04.006Importance: This study showed how the presence of 4DCT image artifacts can negatively influence clinical outcome in stereotactic radiotherapy treatment of lung and liver metastases patients, and emphasizes the need for improving image quality of 4DCT images used in radiation oncology

  62. Chandarana H, Wang H, Tijssen RHN, Das IJ. Emerging role of MRI in radiation therapy. J Magn Reson Imaging. 2018;48(6):1468–78. https://doi.org/10.1002/jmri.26271.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Glide-Hurst CK, Paulson ES, McGee K, et al. Task group 284 report: magnetic resonance imaging simulation in radiotherapy: considerations for clinical implementation, optimization, and quality assurance. Med Phys. 2021. https://doi.org/10.1002/mp.14695.

    Article  PubMed  Google Scholar 

  64. Stemkens B, Paulson ES, Tijssen RHN. Nuts and bolts of 4D-MRI for radiotherapy. Phys Med Biol. 2018. https://doi.org/10.1088/1361-6560/aae56d.

    Article  PubMed  Google Scholar 

  65. Li H, Becker N, Raman S, Chan TCY, Bissonnette JP. The value of nodal information in predicting lung cancer relapse using 4DPET/4DCT. Med Phys. 2015;42(8):4727–33. https://doi.org/10.1118/1.4926755.

    Article  PubMed  Google Scholar 

  66. Siva S, Chesson B, Callahan JW, et al. Dosimetric consequences of 3D versus 4D PET/CT for target delineation of lung stereotactic radiotherapy. J Thorac Oncol. 2015;10(7):1112–5. https://doi.org/10.1097/JTO.0000000000000555.

    Article  CAS  PubMed  Google Scholar 

  67. Siva S, Callahan J, Kron T, et al. A prospective observational study of Gallium-68 ventilation and perfusion PET/CT during and after radiotherapy in patients with non-small cell lung cancer. BMC Cancer. 2014;14(1):1–8. https://doi.org/10.1186/1471-2407-14-740.

    Article  Google Scholar 

  68. Bucknell N, Hardcastle N, Jackson P, et al. Single-arm prospective interventional study assessing feasibility of using gallium-68 ventilation and perfusion PET/CT to avoid functional lung in patients with stage III non-small cell lung cancer. BMJ Open. 2020;10(12): e042465.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tokihiro Yamamoto PD. Novel Lung Functional Imaging for Personalized Radiotherapy. Clin ID NCT02308709. Accessed October 6, 2023. https://classic.clinicaltrials.gov/ProvidedDocs/09/NCT02308709/Prot_SAP_000.pdf

  70. Dou TH, Thomas DH, O’Connell DP, Lamb JM, Lee P, Low DA. A method for assessing ground-truth accuracy of the 5DCT technique. Int J Radiat Oncol Biol Phys. 2015;93(4):925–33. https://doi.org/10.1016/j.ijrobp.2015.07.2272.

    Article  PubMed  PubMed Central  Google Scholar 

  71. O’Connell D, Shaverdian N, Kishan AU, et al. Comparison of lung tumor motion measured using a model-based 4DCT technique and a commercial protocol. Pract Radiat Oncol. 2018;8(3):e175–83. https://doi.org/10.1016/j.prro.2017.11.003.

    Article  PubMed  Google Scholar 

  72. Werner R, Sentker T, Madesta F, et al. Intelligent 4D CT sequence scanning (i4DCT): first scanner prototype implementation and phantom measurements of automated breathing signal-guided 4D CT. Med Phys. 2020;47(6):2408–12. https://doi.org/10.1002/mp.14106.

    Article  CAS  PubMed  Google Scholar 

  73. Kobayashi T, Nishii T, Umehara K, et al. Deep learning-based noise reduction for coronary CT angiography: using four-dimensional noise-reduction images as the ground truth. Acta radiol. 2023;64(5):1831–40.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Kelly Paradis for her helpful discussions while planning this review article.

Author information

Authors and Affiliations

Authors

Contributions

G.A. conducted all research, wrote the manuscript and prepared the figures and tables.

Corresponding author

Correspondence to Ghada Aldosary.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Research Involving Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldosary, G. Four-Dimensional Computed Tomography (4DCT) in Radiation Oncology: A Practical Overview. Curr Radiol Rep (2024). https://doi.org/10.1007/s40134-024-00427-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40134-024-00427-6

Keywords

Navigation