Skip to main content

Advertisement

Log in

Diagnostic Role of Dual-Energy Computed Tomography in the Assessment of Musculoskeletal Oncology: A Literature Review

  • Computed Tomography (Savvas Nicolaou and Mohammed F. Mohammed, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to consolidate knowledge and recent research findings related to the potential clinical applications of dual-energy computed tomography (DECT) for the identification and characterization of bone lesions. The purpose is to explore the advantages of DECT over traditional imaging techniques in musculoskeletal radiology, particularly in the context of oncologic care for cancer patients.

Recent Findings

DECT has emerged as a state-of-the-art imaging technique that offers significant benefits in the detection and assessment of skeletal lesions. It provides improved sensitivity in identifying hidden lesions, including metastatic ones that are often concealed within the marrow space. DECT's advanced technology enables material decomposition and color-coded overlays, allowing for the differentiation of various types of soft tissue mineralization and the evaluation of bone marrow edema and infiltrative skeletal neoplasms. Furthermore, DECT can aid in distinguishing between malignant and benign skeletal lesions, providing valuable diagnostic information for treatment planning and patient care.

Summary

Dual-energy computed tomography (DECT) is a promising tool in musculoskeletal radiology, particularly for oncologic care and disease staging in cancer patients. DECT's ability to differentiate, enhance, or suppress various types of tissues through material decomposition and spectral data analysis makes it a valuable imaging technique for identifying and characterizing bone lesions. With its advanced technology, DECT offers improved sensitivity in detecting hidden lesions and provides valuable diagnostic information without increasing radiation exposure. By addressing the limitations of other imaging modalities, DECT has the potential to enhance patient care and improve outcomes in the field of musculoskeletal radiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Yang P, Wu G, Chang X. Diagnostic accuracy of dual-energy computed tomography in bone marrow edema with vertebral compression fractures: a meta-analysis. Eur J Radiol. 2017;99:124–9.

    Article  PubMed  Google Scholar 

  2. Heindel W, Gübitz R, Vieth V, Weckesser M, Schober O, Schäfers M. The diagnostic imaging of bone metastases. Dtsch Ärztebl Int. 2014. https://doi.org/10.3238/arztebl.2014.0741.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen H, Zhang Y, Pang J, Wu Z, Jia M, Dong Q, et al. The differentiation of soft tissue infiltration and surrounding edema in an animal model of malignant bone tumor: evaluation by dual-energy CT. Technol Cancer Res Treat. 2019;18:153303381984684.

    Article  Google Scholar 

  4. Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281(3):690–707.

    Article  PubMed  Google Scholar 

  5. Yang HL, Liu T, Wang XM, Xu Y, Deng SM. Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT MRI and bone scintigraphy. Eur Radiol. 2011;21(12):2604–17.

    Article  PubMed  Google Scholar 

  6. ••Tan M, Lloyd TB. Utility of dual energy computed tomography in the evaluation of infiltrative skeletal lesions and metastasis: a literature review. Skeletal Radiol. 2022;51:1731–41. (This recent article discusses the advanced usage of DECT in skeletal tumors.)

    Article  PubMed  Google Scholar 

  7. Burke MC, Garg A, Youngner JM, Deshmukh S, Omar IM. Initial experience with dual-energy computed tomography-guided bone biopsies of bone lesions that are occult on monoenergetic CT. Skeletal Radiol. 2019;48:605–13.

    Article  PubMed  Google Scholar 

  8. Omoumi P, Rubini A, Dubuc JE, Vande Berg BC, Lecouvet FE. Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur Radiol. 2015;25(4):961–9.

    Article  PubMed  Google Scholar 

  9. Jiang XY, Zhang SH, Xie QZ, et al. Evaluation of virtual noncontrast images obtained from dual-energy CTA for diagnosing subarachnoid hemorrhage. AJNR Am J Neuroradiol. 2015;198:840–5.

    Google Scholar 

  10. Johnson TRC. Dual-energy CT: general principles. Am J Roentgenol. 2012;199(5_supplement):S3-8.

    Article  Google Scholar 

  11. Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. RadioGraphics. 2018;38(2):450–61.

    Article  PubMed  Google Scholar 

  12. Albrecht MH, Vogl TJ, Martin SS, Nance JW, Duguay TM, Wichmann JL, et al. Review of clinical applications for virtual monoenergetic dual-energy CT. Radiology. 2019;293(2):260–71.

    Article  PubMed  Google Scholar 

  13. •Koch V, Yel I, Grünewald L, Beckers S, Burck I, Lenga L, et al. Assessment of thoracic disk herniation by using virtual noncalcium dual-energy CT in comparison with standard grayscale CT. Eur Radiol. 2021;31:9221–31. (This article assesses disc herniation on DECT which is a common finding and can be misdiagnosed with a skeletal lesion.)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Otrakji A, Digumarthy SR, Lo Gullo R, Flores EJ, Shepard JAO, Kalra MK. Dual-energy CT: spectrum of thoracic abnormalities. RadioGraphics. 2016;36(1):38–52.

    Article  PubMed  Google Scholar 

  15. Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology. 2013;269:525–33.

    Article  PubMed  Google Scholar 

  16. Siegel MJ, Ramirez-Giraldo JC. Dual-energy CT in children: imaging algorithms and clinical applications. Radiology. 2019;291(2):286–97.

    Article  PubMed  Google Scholar 

  17. Kaza RK, Platt JF, Cohan RH, Caoili EM, Al-Hawary MM, Wasnik A. Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract. RadioGraphics. 2012;32(2):353–69.

    Article  PubMed  Google Scholar 

  18. Petritsch B, Kosmala A, Weng A, Krauss B, Heidemeier A, Wagner R, et al. Vertebral compression fractures: third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology. 2017;284(1):161–8.

    Article  PubMed  Google Scholar 

  19. Dwijendra S, Burke M. Application of dual-energy computed tomography in bone lesion biopsy. Adv Clin Radiol. 2020;2:273–84.

    Article  Google Scholar 

  20. McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology. 2015;276(3):637–53.

    Article  PubMed  Google Scholar 

  21. Yoshizumi T. Dual energy CT in clinical practice. Med Phys. 2011;38(11):6346–6346.

    Article  PubMed  Google Scholar 

  22. Glazebrook KN, Guimarães LS, Murthy NS, Black DF, Bongartz T, Manek N, et al. Identification of intraarticular and periarticular uric acid crystals with dual-energy CT: initial evaluation. Radiology. 2011;261(2):516–24.

    Article  PubMed  Google Scholar 

  23. Wortman JR, Uyeda JW, Fulwadhva UP, Sodickson AD. Dual-energy CT for abdominal and pelvic trauma. RadioGraphics. 2018;38(2):586–602.

    Article  PubMed  Google Scholar 

  24. Abdullayev N, Hokamp NG, Lennartz S, Holz J, Romman Z, Pahn G, et al. Improvements of diagnostic accuracy and visualization of vertebral metastasis using multi-level virtual non-calcium reconstructions from dual-layer spectral detector computed tomography. Eur Radiol. 2019;29:1–9.

    Article  Google Scholar 

  25. Palmer W, Simeone F. Can dual-energy CT challenge MR imaging in the diagnosis of focal infiltrative bone marrow lesions? Radiology. 2018;286(1):214–6.

    Article  PubMed  Google Scholar 

  26. Chong CCW, Rai S, Nicolaou S. Dual energy CT in musculoskeletal tumors. In: De Cecco CN, Laghi A, Schoepf UJ, Meinel FG, editors. Dual energy CT in oncology. Cham: Springer; 2015. p. 123–54.

    Chapter  Google Scholar 

  27. •Ishiwata Y, Hieda Y, Kaki S, Aso S, Horie K, Kobayashi Y, et al. Improved diagnostic accuracy of bone metastasis detection by water-HAP associated to non-contrast CT. Diagnostics. 2020;10:853. (This article discusses the advantages of DECT water-HAP images alongside plain CT scans to enhance the diagnostic accuracy of initial staging.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Borggrefe J, Neuhaus V, Blanc ML, Hokamp NG, Maus V, Mpotsaris A, et al. Accuracy of iodine density thresholds for the separation of vertebral bone metastases from healthy-appearing trabecular bone in spectral detector computed tomography. Eur Radiol. 2018;29:3253–61.

    Article  PubMed  Google Scholar 

  29. Ulano A, Bredella MA, Burke P, Chebib I, Simeone FJ, Huang AJ, Torriani M, Chang CY. Distinguishing untreated osteoblastic metastases from enostoses using CT attenuation measurements. AJR. 2016;207(2):362–8. https://doi.org/10.2214/AJR.15.15559.

    Article  PubMed  Google Scholar 

  30. Dong Y, Zheng S, Machida H, Wang B, Liu A, Liu Y, et al. Differential diagnosis of osteoblastic metastases from bone islands in patients with lung cancer by single-source dual-energy CT: advantages of spectral CT imaging. Eur J Radiol. 2015;84(5):901–7.

    Article  PubMed  Google Scholar 

  31. Zheng S, Dong Y, Miao Y, Liu A, Zhang X, Wang B, et al. Differentiation of osteolytic metastases and Schmorl’s nodes in cancer patients using dual-energy CT: advantage of spectral CT imaging. Eur J Radiol. 2014;83(7):1216–21.

    Article  PubMed  Google Scholar 

  32. Jain RK. Determinants of tumor blood flow: a review. Cancer Res. 1988;48(10):2641–58.

    CAS  PubMed  Google Scholar 

  33. Guillevin R, Vallee JN, Lafitte F, Menuel C, Duverneuil NM, Chiras J. Spine metastasis imaging: review of the literature. J Neuroradiol. 2007;34(5):311–21.

    Article  CAS  PubMed  Google Scholar 

  34. David RG. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.

    Article  Google Scholar 

  35. Horger M, Thaiss WM, Wiesinger B, Ditt H, Fritz J, Nikolaou K, et al. Longitudinal computed tomography monitoring of pelvic bones in patients with breast cancer using automated bone subtraction software. Invest Radiol. 2017;52(2):288–94.

    Article  PubMed  Google Scholar 

  36. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–93.

    Article  CAS  PubMed  Google Scholar 

  37. Gdowski A, Ranjan AP, Vishwanatha JK. Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. J Exp Clin Cancer Res. 2017. https://doi.org/10.1186/s13046-017-0578-1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yamaguchi T, Tamai K, Yamato M, Honma K, Ueda Y, Saotome K. Intertrabecular pattern of tumors metastatic to bone. Cancer. 1996;78(7):1388–94.

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki A, Kashiwagi N, Doi H, Ishii K, Doi K, Kitano M, Kozuka T, Hyodo T, Tsurusaki M, Yagyu Y, Nakanishi K. Patterns of bone metastases from head and neck squamous cell carcinoma. Auris Nasus Larynx. 2020;47(2):262–7.

    Article  PubMed  Google Scholar 

  40. Ahmed F, Muzaffar R, Fernandes H, Tu Y, Albalooshi B, Osman MM. Skeletal metastasis as detected by 18F-FDG PET with negative CT of the PET/CT: frequency and impact on cancer staging and/or management. Front Oncol. 2016. https://doi.org/10.3389/fonc.2016.00208/full.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rajiah P, Sundaram M, Subhas N. Dual-energy CT in musculoskeletal imaging: what is the role beyond gout? Am J Roentgenol. 2019;213(3):493–505.

    Article  Google Scholar 

  42. Kraus M, Weiss J, Selo N, Flohr T, Notohamiprodjo M, Bamberg F, et al. Spinal dual-energy computed tomography: improved visualisation of spinal tumorous growth with a noise-optimised advanced monoenergetic post-processing algorithm. Neuroradiology. 2016;58(11):1093–102.

    Article  PubMed  Google Scholar 

  43. Issa G, Davis DL, Mulligan ME. The ability of dual-energy computed tomography to distinguish normal bone marrow from metastases using bone marrow color maps. J Comput Assist Tomogr. 2018;42:552–8.

    Article  PubMed  Google Scholar 

  44. Pache G, Krauss B, Strohm PC, Saueressig U, Blanke P, Bulla S, et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions–feasibility study. Radiology. 2010;256:617–24.

    Article  PubMed  Google Scholar 

  45. Reddy T, McLaughlin PD, Mallinson PI, Reagan AC, Munk PL, Nicolaou S, et al. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema. Emerg Radiol. 2015;22(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kaup M, Wichmann JL, Scholtz JE, Beeres M, Kromen W, Albrecht MH, et al. Dual-energy CT–based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology. 2016;280(2):510–9.

    Article  PubMed  Google Scholar 

  47. Guggenberger R. Dual-energy CT in the detection of bone marrow edema in the sacroiliac joints: is there a case for axial spondyloarthritis? Radiology. 2019;290(1):165–6.

    Article  PubMed  Google Scholar 

  48. Issa G, Mulligan M. Dual energy CT can aid in the emergent differentiation of acute traumatic and pathologic fractures of the pelvis and long bones. Emerg Radiol. 2020;27(3):285–92.

    Article  PubMed  Google Scholar 

  49. Dimopoulos M, Terpos E, Comenzo RL, Tosi P, Beksac M, Sezer O, et al. International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple myeloma. Leukemia. 2009;23:1545–56. https://doi.org/10.1038/leu.2009.89.

    Article  CAS  PubMed  Google Scholar 

  50. Hillengass J, Usmani S, Rajkumar SV, et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 2019;20:e302–12.

    Article  PubMed  Google Scholar 

  51. Terpos E, Kleber M, Engelhardt M, et al. European Myeloma Network. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica. 2015;100:1254–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moreau P, SanMiguel J, Sonneveld P, et al. ESMO Guidelines. Committee Multiple myeloma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl 4):iv52–61.

    Article  CAS  PubMed  Google Scholar 

  53. Dimopoulos MA, Hillengass J, Usmani S, Zamagni E, Lentzsch S, Davies FE, et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol. 2015;33(6):657–64.

    Article  PubMed  Google Scholar 

  54. Kosmala A, Weng AM, Heidemeier A, Krauss B, Knop S, Bley TA, Petritsch B. Multiple myeloma and dual-energy CT: diagnostic accuracy of virtual noncalcium technique for detection of bone marrow infiltration of the spine and pelvis. Radiology. 2018;286(1):205–13.

    Article  PubMed  Google Scholar 

  55. Gu R, Amlani A, Haberland U, Hodson D, Streetly M, Antonelli M, Dregely I, Goh V. Correlation between whole skeleton dual energy CT calcium-subtracted attenuation and bone marrow infiltration in multiple myeloma. Eur J Radiol. 2022;149:110223. https://doi.org/10.1016/j.ejrad.2022.110223.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kosmala A, Weng AM, Krauss B, Knop S, Bley TA, Petritsch B. Dual-energy CT of the bone marrow in multiple myeloma: diagnostic accuracy for quantitative differentiation of infiltration patterns. Eur Radiol. 2018;28:5083–90.

    Article  PubMed  Google Scholar 

  57. Werner S, Krauss B, Horger M. Dual-energy CT-based bone marrow imaging in multiple myeloma: assessment of focal lesions in relation. Acad Radiol. 2022;29:245–54.

    Article  PubMed  Google Scholar 

  58. Fervers P, Celik E, Bratke G, et al. Radiotherapy response assessment of multiple myeloma: a dual-energy CT approach with virtual non-calcium images. Front Oncol. 2021;23(11): 734819. https://doi.org/10.3389/fonc.2021.734819.

    Article  CAS  Google Scholar 

  59. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS. Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology. 2008;249(2):671–81.

    Article  PubMed  Google Scholar 

  60. Agrawal MD, Pinho DF, Kulkarni NM, Hahn PF, Guimaraes AR, Sahani DV. Oncologic applications of dual-energy CT in the abdomen. RadioGraphics. 2014;34(3):589–612.

    Article  PubMed  Google Scholar 

  61. Marin D, Nelson RC, Samei E, et al. Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection–initial clinical experience. Radiology. 2009;251:771–9.

    Article  PubMed  Google Scholar 

  62. Joe E, Kim SH, Lee KB, et al. Feasibility and accuracy of dual-source dual-energy CT for noninvasive determination of hepatic iron accumulation. Radiology. 2012;262:126–35.

    Article  PubMed  Google Scholar 

  63. Johnson TRC, Krauß B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7.

    Article  PubMed  Google Scholar 

  64. Apfaltrer P, Meyer M, Meier C, Henzler T, Barraza JM, Dinter DJ, et al. Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors: is iodine-related attenuation a potential indicator of tumor response? Invest Radiol. 2012;47(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  65. Hagspiel KD, Flors L, Housseini AM, Phull A, Ali Ahmad E, Bozlar U, et al. Pulmonary blood volume imaging with dual-energy computed tomography: spectrum of findings. Clin Radiol. 2012;67(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  66. Jiang T, Zhu AX, Sahani DV. Established and novel imaging biomarkers for assessing response to therapy in hepatocellular carcinoma. J Hepatol. 2013;58(1):169–77.

    Article  CAS  PubMed  Google Scholar 

  67. Sun C, Miao F, Wang X-M, et al. An initial qualitative study of dual-energy CT in the knee ligaments. Surg Radiol Anat. 2008;30:443–7.

    Article  PubMed  Google Scholar 

  68. Agrawal MD, Pinho DF, Kulkarni NM, et al. Oncologic applications of dual-energy CT in the abdomen. Radiographics. 2014;34:589–612.

    Article  PubMed  Google Scholar 

  69. Johnson TRC, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17:1510–7.

    Article  PubMed  Google Scholar 

  70. Hagspiel KD, Flors L, Housseini AM, et al. Pulmonary blood volume imaging with dual-energy computed tomography: spectrum of findings. Clin Radiol. 2012;67:69–77.

    Article  CAS  PubMed  Google Scholar 

  71. Schulz B, Kuehling K, Kromen W. Automatic bone removal technique in whole-body dual-energy CT angiography: performance and image quality. AJR Am J Roentgenol. 2012;199:646–50.

    Article  Google Scholar 

  72. Simonetti I, Verde F, Palumbo L, et al. Dual energy computed tomography evaluation of skeletal traumas. Eur J Radiol. 2021;134: 109456.

    Article  PubMed  Google Scholar 

  73. Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR. Metal artifact reduction by dual-energy computed tomog- raphy using energetic extrapolation: a systematically optimized protocol. Invest Radiol. 2012;47(7):406–14.

    Article  PubMed  Google Scholar 

  74. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21(7):1424–9.

    Article  PubMed  Google Scholar 

  75. Zhou C, Zhao YE, Luo S, et al. Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol. 2011;18(10):1252–7.

    Article  PubMed  Google Scholar 

  76. Kovacs DG, Rechner LA, Appelt AL, Berthelsen AK, Costa JC, Friborg J, Persson GF, Bangsgaard JP, Specht L, Aznar MC. Metal artefact reduction for accurate tumour delineation in radiotherapy. Radiotherapy Oncol. 2018;126(3):479–86. https://doi.org/10.1016/j.radonc.2017.09.029.

    Article  Google Scholar 

  77. Yu L, Li H, Mueller J, et al. Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography: techniques and initial clinical results. Invest Radiol. 2009;44(11):691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Han SC, Chung YE, Lee YH, Park KK, Kim MJ, Kim KW. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility. AJR. 2014;203(4):788–95.

    Article  PubMed  Google Scholar 

  79. Andersson KM, Nowik P, Persliden J, Thunberg P, Norrman E. Metal artefact reduction in CT imaging of hip prostheses: an evaluation of commercial techniques provided by four vendors. Br J Radiol. 2015;88(1052):20140473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang F, Xue H, Yang X, et al. Reduction of metal artifacts from alloy hip prostheses in computer tomography. J Comput Assist Tomogr. 2014;38(6):828–33.

    Article  PubMed  Google Scholar 

  81. Huang JY, Kerns JR, Nute JL, et al. An evaluation of three commercially available metal artifact reduction methods for CT imaging. Phys Med Biol. 2015;60(3):1047–67.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lee YH, Park KK, Song HT, Kim S, Suh JS. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol. 2012;22(6):1331–40.

    Article  PubMed  Google Scholar 

  83. Andersson KM, Norrman E, Geijer H, et al. Visual grading evaluation of commercially available metal artefact reduction techniques in hip prosthesis computed tomography. Br J Radiol. 2016;89(1063):20150993.

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in writing the main manuscript text and prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jumanah Altwalah.

Ethics declarations

Competing Interests

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical Approval

Not applicable

Research Involving Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altwalah, J., Alsalman, H. & Sheikh, A. Diagnostic Role of Dual-Energy Computed Tomography in the Assessment of Musculoskeletal Oncology: A Literature Review. Curr Radiol Rep 12, 19–29 (2024). https://doi.org/10.1007/s40134-023-00423-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40134-023-00423-2

Keywords

Navigation