Skip to main content

Advertisement

Log in

Susceptibility-Based Neuroimaging: Standard Methods, Clinical Applications, and Future Directions

  • Neuroimaging (B Soares and S Dehkharghani, Section Editors)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Review MRI neuroimaging techniques which utilize tissue susceptibility.

Recent Findings

The evaluation of neuropathologies using MRI methods that leverage tissue susceptibility have become standard practice, especially to detect blood products or mineralization. Additionally, emerging MRI techniques have the ability to provide new information based on tissue susceptibility properties in a robust and quantitative manner.

Summary

This paper discusses these advanced susceptibility imaging techniques and their clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wang Y. Principles of magnetic resonance imaging: physics concepts, pulse sequences, and biomedical applications. CreateSpace Independent Publishing Platform; 2012.

  2. Vernooij MW, et al. Cerebral microbleeds: accelerated 3D T2*-weighted GRE MR imaging versus conventional 2D T2*-weighted GRE MR imaging for detection. Radiology. 2008;248(1):272–7.

    Article  PubMed  Google Scholar 

  3. Shmueli K, et al. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med. 2009;62(6):1510–22.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Reichenbach JR, et al. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology. 1997;204(1):272–7.

    Article  CAS  PubMed  Google Scholar 

  5. Haacke EM, et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol. 2009;30(1):19–30.

    Article  CAS  PubMed  Google Scholar 

  6. Tong KA, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology. 2003;227(2):332–9.

    Article  PubMed  Google Scholar 

  7. Tong KA, et al. Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol. 2004;56(1):36–50.

    Article  PubMed  Google Scholar 

  8. Cheng AL, et al. Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds. Stroke. 2013;44(10):2782–6.

    Article  PubMed  Google Scholar 

  9. Soman S, et al. Improved T2* imaging without increase in scan time: SWI processing of 2D gradient echo. AJNR Am J Neuroradiol. 2013;34(11):2092–7.

    Article  CAS  PubMed  Google Scholar 

  10. de Rochefort L, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med. 2010;63(1):194–206.

    PubMed  Google Scholar 

  11. Wang Y, et al. Magnetic source MRI: a new quantitative imaging of magnetic biomarkers. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:53–6.

    PubMed  Google Scholar 

  12. Kressler B, et al. Nonlinear regularization for per voxel estimation of magnetic susceptibility distributions from MRI field maps. IEEE Trans Med Imaging. 2010;29(2):273–81.

    Article  PubMed  Google Scholar 

  13. •• Wang Y, Liu T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 2015;73(1):82–101. Covers core features of susceptibilty imaging.

  14. Haacke EM, et al. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015;33(1):1–25.

    Article  PubMed  Google Scholar 

  15. Liu C, et al. Quantitative susceptibility mapping: contrast mechanisms and clinical applications. Tomography. 2015;1(1):3–17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reichenbach JR, et al. Quantitative susceptibility mapping: concepts and applications. Clin Neuroradiol. 2015;25(Suppl 2):225–30.

    Article  PubMed  Google Scholar 

  17. Rigolo L, et al. Development of a clinical functional magnetic resonance imaging service. Neurosurg Clin N Am. 2011;22(2):307–14.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ogawa S, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ostergaard L. Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging. 2005;22(6):710–7.

    Article  PubMed  Google Scholar 

  20. Iv M, et al. Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine (Lond). 2015;10(6):993–1018.

    Article  CAS  Google Scholar 

  21. Faul M et al. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006, N.C.f.I.P.a.C. Centers for Disease Control and Prevention, Editor. 2010, Centers for Disease Control and Prevention. National Center for Injury Prevention and Control: Atlanta (GA).

  22. Mittal S, et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol. 2009;30(2):232–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Toth A, et al. Microbleeds may expand acutely after traumatic brain injury. Neurosci Lett. 2016;617:207–12.

    Article  CAS  PubMed  Google Scholar 

  24. Choi JI, et al. Comparison of subgroups based on hemorrhagic lesions between SWI and FLAIR in pediatric traumatic brain injury. Childs Nerv Syst. 2014;30(6):1011–9.

    Article  PubMed  Google Scholar 

  25. Geurts BH, et al. The reliability of magnetic resonance imaging in traumatic brain injury lesion detection. Brain Inj. 2012;26(12):1439–50.

    Article  PubMed  Google Scholar 

  26. Park JH, et al. Detection of traumatic cerebral microbleeds by susceptibility-weighted image of MRI. J Korean Neurosurg Soc. 2009;46(4):365–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sharp DJ, Ham TE. Investigating white matter injury after mild traumatic brain injury. Curr Opin Neurol. 2011;24(6):558–63.

    Article  PubMed  Google Scholar 

  28. Iwamura A, et al. Diffuse vascular injury: convergent-type hemorrhage in the supratentorial white matter on susceptibility-weighted image in cases of severe traumatic brain damage. Neuroradiology. 2012;54(4):335–43.

    Article  PubMed  Google Scholar 

  29. Iwasaki H, Fujita Y, Hara M. Susceptibility-weighted imaging in acute-stage pediatric convulsive disorders. Pediatr Int. 2015;57(5):922–9.

    Article  PubMed  Google Scholar 

  30. Verma RK, et al. Focal and generalized patterns of cerebral cortical veins due to non-convulsive status epilepticus or prolonged seizure episode after convulsive status epilepticus—a mri study using susceptibility weighted imaging. PLoS ONE. 2016;11(8):e0160495.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Calabresi, P.A., Multiple sclerosis and demyelinating conditions of the central nervous system. 25th ed. Goldman-Cecil Medicine. Vol. 2. Amsterdam: Elsevier; 2016.

  32. Chen W, et al. Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology. 2014;271(1):183–92.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oztoprak B, Oztoprak I, Yildiz OK. The effect of venous anatomy on the morphology of multiple sclerosis lesions: a susceptibility-weighted imaging study. Clin Radiol. 2016;71(5):418–26.

    Article  CAS  PubMed  Google Scholar 

  34. Hodel J, et al. Brain magnetic susceptibility changes in patients with natalizumab-associated progressive multifocal leukoencephalopathy. AJNR Am J Neuroradiol. 2015;36(12):2296–302.

    Article  CAS  PubMed  Google Scholar 

  35. Khamaysi Z, et al. Clinical and imaging findings in patients with neurosyphilis: a study of a cohort and review of the literature. Int J Dermatol. 2014;53(7):812–9.

    Article  PubMed  Google Scholar 

  36. Pesaresi I, et al. Susceptibility-weighted imaging in parenchymal neurosyphilis: identification of a new MRI finding. Sex Transm Infect. 2015;91(7):489–92.

    Article  PubMed  Google Scholar 

  37. Toh CH, et al. Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibility-weighted imaging. AJNR Am J Neuroradiol. 2012;33(8):1534–8.

    Article  CAS  PubMed  Google Scholar 

  38. Antulov R, et al. Differentiation of pyogenic and fungal brain abscesses with susceptibility-weighted MR sequences. Neuroradiology. 2014;56(11):937–45.

    Article  PubMed  Google Scholar 

  39. Bijlsma MW, et al. Community-acquired bacterial meningitis in adults in the Netherlands, 2006–14: a prospective cohort study. Lancet Infect Dis. 2016;16(3):339–47.

    Article  PubMed  Google Scholar 

  40. Bosemani T, Poretti A, Huisman TA. Susceptibility-weighted imaging in pediatric neuroimaging. J Magn Reson Imaging. 2014;40(3):530–44.

    Article  PubMed  Google Scholar 

  41. Santhosh K, et al. Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke. Clin Radiol. 2009;64(1):74–83.

    Article  CAS  PubMed  Google Scholar 

  42. Polan RM, et al. Susceptibility-weighted imaging in pediatric arterial ischemic stroke: a valuable alternative for the noninvasive evaluation of altered cerebral hemodynamics. AJNR Am J Neuroradiol. 2015;36(4):783–8.

    Article  CAS  PubMed  Google Scholar 

  43. Elnekeidy AE, Yehia A, Elfatatry A. Importance of susceptibility weighted imaging (SWI) in management of cerebro-vascular strokes (CVS). Alexandria J Med. 2014;50(1):83–91.

    Article  Google Scholar 

  44. Moulin T, et al. Hemorrhagic infarcts. Eur Neurol. 1994;34(2):64–77.

    Article  CAS  PubMed  Google Scholar 

  45. Copen WA, Schaefer PW, Wu O. MR perfusion imaging in acute ischemic stroke. Neuroimaging Clin N Am. 2011;21(2):259–83.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kao HW, Tsai FY, Hasso AN. Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion. Eur Radiol. 2012;22(7):1397–403.

    Article  PubMed  Google Scholar 

  47. Miyasaka T, et al. Application of susceptibility weighted imaging (SWI) for evaluation of draining veins of arteriovenous malformation: utility of magnitude images. Neuroradiology. 2012;54(11):1221–7.

    Article  PubMed  Google Scholar 

  48. Tsui YK, et al. Susceptibility-weighted imaging for differential diagnosis of cerebral vascular pathology: a pictorial review. J Neurol Sci. 2009;287(1–2):7–16.

    Article  PubMed  Google Scholar 

  49. George U, et al. Susceptibility-weighted imaging in the evaluation of brain arteriovenous malformations. Neurol India. 2010;58(4):608–14.

    Article  PubMed  Google Scholar 

  50. Lee BC, et al. MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions. AJNR Am J Neuroradiol. 1999;20(7):1239–42.

    CAS  PubMed  Google Scholar 

  51. Bulut HT, Sarica MA, Baykan AH. The value of susceptibility weighted magnetic resonance imaging in evaluation of patients with familial cerebral cavernous angioma. Int J Clin Exp Med. 2014;7(12):5296–302.

    PubMed  PubMed Central  Google Scholar 

  52. Chaudhry US, De Bruin DE, Policeni BA. Susceptibility-weighted MR imaging: a better technique in the detection of capillary telangiectasia compared with T2* gradient-echo. AJNR Am J Neuroradiol. 2014;35(12):2302–5.

    Article  CAS  PubMed  Google Scholar 

  53. Tamer H, et al. Hemodynamic analysis of an adult vein of Galen aneurysm malformation by use of 3D image-based computational fluid dynamics. AJNR Am J Neuroradiol. 2003;24(6):1075–82.

    Google Scholar 

  54. Tong KA, et al. Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol. 2008;29(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  55. Verschuuren S, et al. Susceptibility-weighted imaging of the pediatric brain. AJR Am J Roentgenol. 2012;198(5):W440–9.

    Article  PubMed  Google Scholar 

  56. Dai Y, et al. Visualizing cerebral veins in fetal brain using susceptibility-weighted MRI. Clin Radiol. 2014;69(10):e392–7.

    Article  CAS  PubMed  Google Scholar 

  57. Kelly JE, et al. Susceptibility-weighted imaging helps to discriminate pediatric multiple sclerosis from acute disseminated encephalomyelitis. Pediatr Neurol. 2015;52(1):36–41.

    Article  PubMed  Google Scholar 

  58. Hu J, et al. MR susceptibility weighted imaging (SWI) complements conventional contrast enhanced T1 weighted MRI in characterizing brain abnormalities of Sturge–Weber syndrome. J Magn Reson Imaging. 2008;28(2):300–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hingwala D, et al. Clinical utility of susceptibility-weighted imaging in vascular diseases of the brain. Neurol India. 2010;58(4):602–7.

    Article  PubMed  Google Scholar 

  60. Franceschi AM, et al. Use of susceptibility-weighted imaging (SWI) in the detection of brain hemorrhagic metastases from breast cancer and melanoma. J Comput Assist Tomogr. 2016;40(5):803–5.

    Article  PubMed  Google Scholar 

  61. Hsu CC, et al. Susceptibility-weighted imaging of glioma: update on current imaging status and future directions. J Neuroimaging. 2016;26(4):383–90.

    Article  PubMed  Google Scholar 

  62. Daldrup-Link HE, et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res. 2011;17(17):5695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mohammed W, et al. Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review. Cancer Imaging. 2013;13:186–95.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cha S, et al. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 2002;223(1):11–29.

    Article  PubMed  Google Scholar 

  65. Wang X, et al. Neuronavigation-assisted trajectory planning for deep brain biopsy with susceptibility-weighted imaging. Acta Neurochir (Wien). 2016;158(7):1355–62.

    Article  Google Scholar 

  66. Hertel F, et al. Susceptibility-weighted MRI for deep brain stimulation: potentials in trajectory planning. Stereotact Funct Neurosurg. 2015;93(5):303–8.

    Article  PubMed  Google Scholar 

  67. Liu T, et al. Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Radiology. 2013;269(1):216–23.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang M, et al. Susceptibility weighted imaging in detecting hemorrhage in acute cervical spinal cord injury. Magn Reson Imaging. 2011;29(3):365–73.

    Article  PubMed  Google Scholar 

  69. Martin N, et al. Comparison of MERGE and axial T2-weighted fast spin-echo sequences for detection of multiple sclerosis lesions in the cervical spinal cord. AJR Am J Roentgenol. 2012;199(1):157–62.

    Article  PubMed  Google Scholar 

  70. Ishizaka K, et al. Detection of normal spinal veins by using susceptibility-weighted imaging. J Magn Reson Imaging. 2010;31(1):32–8.

    Article  PubMed  Google Scholar 

  71. Katayama Y, et al. Continuous monitoring of jugular bulb oxygen saturation as a measure of the shunt flow of cerebral arteriovenous malformations. J Neurosurg. 1994;80(5):826–33.

    Article  CAS  PubMed  Google Scholar 

  72. Cai M, et al. Susceptibility-weighted imaging of the venous networks around the brain stem. Neuroradiology. 2015;57(2):163–9.

    Article  PubMed  Google Scholar 

  73. Liu T, et al. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med. 2011;66(3):777–83.

    Article  PubMed  Google Scholar 

  74. Liu J, et al. Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage. 2012;59(3):2560–8.

    Article  PubMed  Google Scholar 

  75. Schweser F, et al. Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain. Neuroimage. 2012;62(3):2083–100.

    Article  PubMed  Google Scholar 

  76. Wu B, et al. Whole brain susceptibility mapping using compressed sensing. Magn Reson Med. 2012;67(1):137–47.

    Article  PubMed  Google Scholar 

  77. Liu T, et al. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med. 2009;61(1):196–204.

    Article  PubMed  Google Scholar 

  78. Wharton S, Bowtell R. Whole-brain susceptibility mapping at high field: a comparison of multiple- and single-orientation methods. Neuroimage. 2010;53(2):515–25.

    Article  PubMed  Google Scholar 

  79. Deistung A, et al. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. Neuroimage. 2013;65:299–314.

    Article  PubMed  Google Scholar 

  80. Khabipova D, et al. A modulated closed form solution for quantitative susceptibility mapping–a thorough evaluation and comparison to iterative methods based on edge prior knowledge. Neuroimage. 2015;107:163–74.

    Article  PubMed  Google Scholar 

  81. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38(4):591–603.

    Article  CAS  PubMed  Google Scholar 

  82. Pruessmann KP, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.

    Article  CAS  PubMed  Google Scholar 

  83. Griswold MA, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202–10.

    Article  PubMed  Google Scholar 

  84. Breuer FA, et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med. 2006;55(3):549–56.

    Article  PubMed  Google Scholar 

  85. Bilgic B, et al. Wave-CAIPI for highly accelerated 3D imaging. Magn Reson Med. 2015;73(6):2152–62.

    Article  PubMed  Google Scholar 

  86. Moriguchi H, Duerk JL. Bunched phase encoding (BPE): a new fast data acquisition method in MRI. Magn Reson Med. 2006;55(3):633–48.

    Article  PubMed  Google Scholar 

  87. Zahneisen B, et al. Three-dimensional Fourier encoding of simultaneously excited slices: generalized acquisition and reconstruction framework. Magn Reson Med. 2014;71(6):2071–81.

    Article  PubMed  Google Scholar 

  88. Langkammer C, et al. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. Neuroimage. 2015;111:622–30.

    Article  PubMed  Google Scholar 

  89. Wu B, et al. Fast and tissue-optimized mapping of magnetic susceptibility and T2* with multi-echo and multi-shot spirals. Neuroimage. 2012;59(1):297–305.

    Article  PubMed  Google Scholar 

  90. Bilgic B, et al. Rapid multi-orientation quantitative susceptibility mapping. Neuroimage. 2016;125:1131–41.

    Article  PubMed  Google Scholar 

  91. de Rochefort L, et al. In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI. Med Phys. 2008;35(12):5328–39.

    Article  PubMed  Google Scholar 

  92. Liu Z, et al. Preconditioned total field inversion (TFI) method for quantitative susceptibility mapping. Magn Reson Med. 2016;62:1510–22.

    Google Scholar 

  93. Kudo K, et al. Oxygen extraction fraction measurement using quantitative susceptibility mapping: comparison with positron emission tomography. J Cereb Blood Flow Metab. 2016;36(8):1424–33.

    Article  CAS  PubMed  Google Scholar 

  94. • Fan AP, et al. Quantitative oxygenation venography from MRI phase. Magn Reson Med. 2014;72(1):149–59. Describes details of MR venography using susceptibility imaging.

  95. Jain V, Langham MC, Wehrli FW. MRI estimation of global brain oxygen consumption rate. J Cereb Blood Flow Metab. 2010;30(9):1598–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Haacke EM, et al. In vivo measurement of blood oxygen saturation using magnetic resonance imaging: a direct validation of the blood oxygen level-dependent concept in functional brain imaging. Hum Brain Mapp. 1997;5(5):341–6.

    Article  CAS  PubMed  Google Scholar 

  97. Fan AP, et al. Baseline oxygenation in the brain: correlation between respiratory-calibration and susceptibility methods. Neuroimage. 2016;125:920–31.

    Article  PubMed  Google Scholar 

  98. Xu B, et al. Quantification of cerebral perfusion using dynamic quantitative susceptibility mapping. Magn Reson Med. 2015;73(4):1540–8.

    Article  PubMed  Google Scholar 

  99. Cetin, S., et al. Vessel orientation constrained quantitative susceptibility mapping (QSM) reconstruction. In Ourselin S et al., editors. Medical image computing and computer-assisted intervention – MICCAI 2016: 19th International Conference, Athens, Greece, October 17–21, 2016, Proceedings, Part III, . 2016, Springer International Publishing: Cham. p. 467–474.

  100. Bazin, P.L., et al. Vessel segmentation from quantitative susceptibility maps for local oxygenation venography. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) 2016.

  101. Dula AN, et al. Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis at 7T. Mult Scler. 2016;22(3):320–8.

    Article  CAS  PubMed  Google Scholar 

  102. • Barry RL, et al. Resting state functional connectivity in the human spinal cord. Elife. 2014;3:e02812. Describes core principles of spinal cord functional connectivity.

  103. Delso G, et al. Anatomic evaluation of 3-dimensional ultrashort-echo-time bone maps for PET/MR attenuation correction. J Nucl Med. 2014;55(5):780–5.

    Article  PubMed  Google Scholar 

  104. Sheth V, et al. Magnetic resonance imaging of myelin using ultrashort Echo time (UTE) pulse sequences: phantom, specimen, volunteer and multiple sclerosis patient studies. Neuroimage. 2016;136:37–44.

    Article  PubMed  Google Scholar 

  105. Du J, et al. Ultrashort echo time (UTE) magnetic resonance imaging of the short T2 components in white matter of the brain using a clinical 3T scanner. Neuroimage. 2014;87:32–41.

    Article  PubMed  Google Scholar 

  106. Li W, et al. Susceptibility tensor imaging (STI) of the brain. NMR Biomed. 2016;66(3):777–83.

    Google Scholar 

  107. Haacke EM, Reichenbach R Jr. Susceptibility weighted imaging in MRI: basic concepts and clinical applications. Hoboken: Wiley-Blackwell; 2011.

    Book  Google Scholar 

Download references

Acknowledgements

Audrey Fan reports a grant from Stanford Neurosciences Institute and research support from GE Healthcare. Yi Wang reports grants (R01NS07230, 090464, 095562). Berkin Bilgic acknowledges support from grants NIBIB R01 EB02061302, R01 EB01733703 and NIMH R24 MH10609603. Robert Barry acknowledges support from grant NIBIB R00 EB016689. Jiang Du acknowledges support from grant 1R01 NS092650.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salil Soman.

Ethics declarations

Conflict of interest

Salil Soman, Jose A. Bregni, Berkin Bilgic, Ursula Nemec, Zhe Liu, Robert L. Barry, Jiang Du, Keith Main, Jerome Yesavage, Maheen M Adamson, and Michael Moseley each declare no potential conflicts of interest. Yi Wang is an inventor on QSM patent issued.

Human and Animal Rights and Informed Consent

All the images in this paper were obtained from human subjects under IRB approved protocols.

Additional information

This article is part of the Topical Collection on Neuroimaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soman, S., Bregni, J.A., Bilgic, B. et al. Susceptibility-Based Neuroimaging: Standard Methods, Clinical Applications, and Future Directions. Curr Radiol Rep 5, 11 (2017). https://doi.org/10.1007/s40134-017-0204-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-017-0204-1

Keywords

Navigation