Skip to main content

Advertisement

Log in

New Concepts in the Imaging of Pediatric Brain Tumors: The Revival of Age-old Real Estate Principles

  • Neuroimaging (B Soares, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Tumor location and age of the patient are important diagnostic imaging clues in neurooncology. Recently, the value of tumor location analysis has gained significance because of improvements in our understanding of the neurodevelopmental origins and genetic as well as epigenetic features of CNS tumors, especially in children. This knowledge has contributed to the development of the concept of “imaging genomics,” which is based on the recognition that imaging has the potential to translate and validate some of the already existing hypotheses from basic research to the clinical practice and propose others based on large-scale in vivo human observational studies. Interestingly, the old real estate principles, “location, location and location” (of tumors) and “age” (of the patient) are now central elements of many of the new concepts and increasingly reconceptualize the diagnostic imaging approaches to these diseases. This paper reviews some of the groundbreaking basic neurobiology discoveries about medulloblastomas, ependymomas, and high-grade gliomas and their implications on the pediatric neuroradiologist’s approach to these diseases in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. [Erratum appears in Neuro-oncology. 2014;16(5):760]. Neuro-oncology. 2013;15(Suppl 2):ii1–56.

    Article  PubMed  PubMed Central  Google Scholar 

  2. • Garber JE, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol. 2005;23(2):276–92. Somewhat dated by now, but still a good overview of hereditary cancer predisposition syndromes.

  3. Korshunov A, Sturm D, Ryzhova M, Hovestadt V, Gessi M, Jones DT, et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol (Berl). 2014;128(2):279–89.

    Article  Google Scholar 

  4. Torchia J, Picard D, Lafay-Cousin L, Hawkins CE, Kim SK, Letourneau L, et al. Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. Lancet Oncol. 2015;16(5):569–82.

    Article  CAS  PubMed  Google Scholar 

  5. Wani K, Armstrong TS, Vera-Bolanos E, Raghunathan A, Ellison D, Gilbertson R, et al. A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol (Berl). 2012;123(5):727–38.

    Article  CAS  Google Scholar 

  6. •• Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2008;247(2):490–8. Groundbreaking paper showing for the first time the unique opportunities advanced MRI techniques may provide in the diagnostic imaging evaluation and prognostication of brain tumors.

  7. Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol. 2003;24(10):1989–98.

    PubMed  Google Scholar 

  8. • Al-Okaili RN, Krejza J, Wang S, Woo JH, Melhem ER. Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. Radiographics. 2006;26(Suppl 1):S173–89. The most comprehensive algorithmic approach to date to aid with the diagnosis and differential diagnosis of intracranial masses. It also highlights the key role of advanced MRI techniques.

  9. Al-Okaili RN, Krejza J, Woo JH, Wolf RL, O’Rourke DM, Judy KD, et al. Intraaxial brain masses: MR imaging-based diagnostic strategy—initial experience. Radiology. 2007;243(2):539–50.

    Article  PubMed  Google Scholar 

  10. Poschl J, Koch A, Schuller U. Histological subtype of medulloblastoma frequently changes upon recurrence. Acta Neuropathol (Berl). 2015;129(3):459–61.

    Article  Google Scholar 

  11. Chelliah D, Mensah Sarfo-Poku C, Stea BD, Gardetto J, Zumwalt J. Medulloblastoma with extensive nodularity undergoing post-therapeutic maturation to a gangliocytoma: a case report and literature review. Pediatr Neurosurg. 2010;46(5):381–4.

    Article  PubMed  Google Scholar 

  12. Eberhart CG, Kepner JL, Goldthwaite PT, Kun LE, Duffner PK, Friedman HS, et al. Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer. 2002;94(2):552–60.

    Article  PubMed  Google Scholar 

  13. Mueller DP, Moore SA, Sato Y, Yuh WT. MRI spectrum of medulloblastoma. Clin Imaging. 1992;16(4):250–5.

    Article  CAS  PubMed  Google Scholar 

  14. Eran A, Ozturk A, Aygun N, Izbudak I. Medulloblastoma: atypical CT and MRI findings in children. Pediatr Radiol. 2010;40(7):1254–62.

    Article  PubMed  Google Scholar 

  15. Giangaspero F, Perilongo G, Fondelli MP, Brisigotti M, Carollo C, Burnelli R, et al. Medulloblastoma with extensive nodularity: a variant with favorable prognosis. J Neurosurg. 1999;91(6):971–7.

    Article  CAS  PubMed  Google Scholar 

  16. Suresh TN, Santosh V, Yasha TC, Anandh B, Mohanty A, Indiradevi B, et al. Medulloblastoma with extensive nodularity: a variant occurring in the very young-clinicopathological and immunohistochemical study of four cases. Childs Nerv Syst. 2004;20(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  17. •• Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol (Berl). 2012;123(4):465–72. A great paper describing the foundations for the current, molecular classification of medulloblastoma.

  18. Shih DJ, Northcott PA, Remke M, Korshunov A, Ramaswamy V, Kool M, et al. Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol. 2014;32(9):886–96.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wright KD, von der Embse K, Coleman J, Patay Z, Ellison DW, Gajjar A. Isochromosome 17q, MYC amplification and large cell/anaplastic phenotype in a case of medullomyoblastoma with extracranial metastases. Pediatr Blood Cancer. 2012;59(3):561–4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol (Berl). 2011;121(3):381–96.

    Article  CAS  Google Scholar 

  21. Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form SHH-induced medulloblastoma. Cancer Cell. 2008;14(2):123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M, et al. Medulloblastoma can be initiated by deletion of patched in lineage-restricted progenitors or stem cells. Cancer Cell. 2008;14(2):135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. •• Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 2010;468(7327):1095–9. The reference paper to describe how basic research sheds new light on our understanding of the developmental origins of medulloblastoma. The first paper to conceptualize the importance of location of molecular medulloblastoma subtypes.

  24. Patay Z, DeSain LA, Hwang SN, Coan A, Li Y, Ellison DW. MR imaging characteristics of wingless-type-subgroup pediatric medulloblastoma. Am J Neuroradiol. 2015;36(12):2386–93.

    Article  CAS  PubMed  Google Scholar 

  25. Grammel D, Warmuth-Metz M, von Bueren AO, Kool M, Pietsch T, Kretzschmar HA, et al. Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathol (Berl). 2012;123(4):601–14.

    Article  CAS  Google Scholar 

  26. Wefers AK, Warmuth-Metz M, Poschl J, von Bueren AO, Monoranu CM, Seelos K, et al. Subgroup-specific localization of human medulloblastoma based on pre-operative MRI. Acta Neuropathol (Berl). 2014;127(6):931–3.

    Article  Google Scholar 

  27. Perreault S, Ramaswamy V, Achrol AS, Chao K, Liu TT, Shih D, et al. MRI surrogates for molecular subgroups of medulloblastoma. Am J Neuroradiol. 2014;35(7):1263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Godfraind C. Classification and controversies in pathology of ependymomas. Childs Nerv Syst. 2009;25(10):1185–93.

    Article  PubMed  Google Scholar 

  29. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, et al. Radial glia cells are candidate stem cells of ependymoma.[Erratum appears in Cancer Cell. 2006;9(1):70]. Cancer Cell. 2005;8(4):323–35.

    Article  CAS  PubMed  Google Scholar 

  30. •• Malatesta P, Gotz M. Radial glia—from boring cables to stem cell stars. Development. 2013;140(3):483–6. Great paper to familiarize with the changing, new concepts about radial glia cells.

  31. U-King-Im JM, Taylor MD, Raybaud C. Posterior fossa ependymomas: new radiological classification with surgical correlation. Childs Nerv Syst. 2010;26(12):1765–72.

    Article  PubMed  Google Scholar 

  32. Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. 2011;20(2):143–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Diaz AK, Baker SJ. The genetic signatures of pediatric high-grade glioma: no longer a one-act play. Semin Radiat Oncol. 2014;24(4):240–7. Important review paper describing many of the recent developments in basic research in high grade gliomas.

  34. Bax DA, Mackay A, Little SE, Carvalho D, Viana-Pereira M, Tamber N, et al. A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res. 2010;16(13):3368–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaplan FS, Xu M, Glaser DL, Collins F, Connor M, Kitterman J, et al. Early diagnosis of fibrodysplasia ossificans progressiva. Pediatrics. 2008;121(5):e1295–300.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Taylor KR, Mackay A, Truffaux N, Butterfield YS, Morozova O, Philippe C, et al. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet. 2014;46(5):457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Broniscer A, Laningham FH, Sanders RP, Kun LE, Ellison DW, Gajjar A. Young age may predict a better outcome for children with diffuse pontine glioma. Cancer. 2008;113(3):566–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Patay.

Ethics declarations

Conflict of Interest

Zoltan Patay reports grants from the United States National Institutes of Health Cancer Center.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Neuroimaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patay, Z. New Concepts in the Imaging of Pediatric Brain Tumors: The Revival of Age-old Real Estate Principles. Curr Radiol Rep 4, 32 (2016). https://doi.org/10.1007/s40134-016-0164-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-016-0164-x

Keywords

Navigation