Skip to main content

Pediatric Neuroimaging

  • Chapter
Pediatric Neuro-oncology

Abstract

Neuroimaging is a key tool in the diagnosis and follow-up of neuro-oncologic patients. Magnetic resonance imaging (MRI) and computerized tomography (CT) are the main imaging modalities involved in neuroimaging diagnosis. These two imaging modalities are different regarding imaging acquisition principles and techniques. One of the main differences between them is that CT uses ionizing radiation for imaging acquisition while MRI uses a magnetic field. MRI imaging also has the advantage over CT as it demonstrates significantly more details of the tissues and the anatomy of the brain. Therefore, because of the risks related to radiation exposure and lack of additional information as compared to MRI, CT is a less attractive method to image the head.

PET (positron emission tomography) and molecular imaging are rapidly developing as new techniques to evaluate brain tumor. The results provided by PET and molecular imaging appear to corroborate the findings of MRI studies and may contribute to decision-making in the treatment and follow-up of patients. Therefore, understanding general principles of imaging acquisition and interpretation can help the clinician to improve patient care.

The aim of this chapter is to describe standard MRI and CT imaging acquisition techniques, basic principles of imaging interpretation, as well as radiation safety principles. New imaging techniques will also be visited together with the influence that these may have on day-to-day practice in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaste SC, Young CW, Holmes TP, Baker DK. Effect of helical CT on the frequency of sedation in pediatric patients. AJR Am J Roentgenol. 1997;168(4):1001–3. PubMed PMID: 9124104.

    Article  CAS  PubMed  Google Scholar 

  2. Ginde AA, Foianini A, Renner DM, Valley M, Camargo Jr CA. Availability and quality of computed tomography and magnetic resonance imaging equipment in U.S. emergency departments. Acad Emerg Med. 2008;15(8):780–3.

    Article  PubMed  Google Scholar 

  3. Peck DJ, Samei E. How to understand and communicate radiation risk. Image Wisely; American College of Radiology; 2010. http://www.imagewisely.org/Imaging-Professionals/Medical-Physicists/Articles/How-to-Understand-and-Communicate-Radiation-Risk?referrer=search. Accessed 24 Apr 2013.

  4. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505. PubMed PMID: 22681860. Pubmed Central PMCID: 3418594.

    Article  PubMed Central  PubMed  Google Scholar 

  5. IAEA. Radiation, people and the environment: a broad overview of ionizing radiation, its effects and uses, as well as the measures in place to use it safely. Vienna: IAEA; 2004. p. 23–8.

    Google Scholar 

  6. Udayasankar UK, Braithwaite K, Arvaniti M, Tudorascu D, Small WC, Little S, et al. Low-dose nonenhanced head CT protocol for follow-up evaluation of children with ventriculoperitoneal shunt: reduction of radiation and effect on image quality. AJNR Am J Neuroradiol. 2008;29(4):802–6. PubMed PMID: 18397968.

    Article  CAS  PubMed  Google Scholar 

  7. ACR Manual on Contrast Media - version 8. ACR Committee on Drugs and Contrast Media. American College of Radiology; 2012.

    Google Scholar 

  8. Senggen E, Laswed T, Meuwly JY, Maestre LA, Jaques B, Meuli R, et al. First and second branchial arch syndromes: multimodality approach. Pediatr Radiol. 2011;41(5):549–61. PubMed PMID: 20924574.

    Article  PubMed  Google Scholar 

  9. Barkovich AJRC. Pediatric neuroimaging. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 20–80.

    Google Scholar 

  10. Parizel PM, Makkat S, Van Miert E, Van Goethem JW, van den Hauwe L, De Schepper AM. Intracranial hemorrhage: principles of CT and MRI interpretation. Eur Radiol. 2001;11(9):1770–83. PubMed PMID: 11511901.

    Article  CAS  PubMed  Google Scholar 

  11. Osborn AG. Osborn’s brain: imaging, pathology and anatomy. 1st ed. Philadelphia: Amirsys and Lippincott Williams & Wilkins; 2012. p. 215–43.

    Google Scholar 

  12. Barkovich AJ, Raybaud C. Pediatric neuroimaging. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 637–807.

    Google Scholar 

  13. Rao P. Role of MRI in paediatric neurooncology. Eur J Radiol. 2008;68(2):259–70. PubMed PMID: 18775616.

    Article  PubMed  Google Scholar 

  14. Zou Z, Zhang HL, Roditi GH, Leiner T, Kucharczyk W, Prince MR. Nephrogenic systemic fibrosis: review of 370 biopsy-confirmed cases. JACC Cardiovasc Imaging. 2011;4(11):1206–16. PubMed PMID: 22093272.

    Article  PubMed  Google Scholar 

  15. Expert Panel on MRS, Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley Jr WG, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013;37(3):501–30. PubMed PMID: 23345200.

    Article  Google Scholar 

  16. Cravero JP, Blike GT. Review of pediatric sedation. Anesth Analg. 2004;99(5):1355–64. PubMed PMID: 15502031.

    Article  PubMed  Google Scholar 

  17. Sanborn PA, Michna E, Zurakowski D, Burrows PE, Fontaine PJ, Connor L, et al. Adverse cardiovascular and respiratory events during sedation of pediatric patients for imaging examinations. Radiology. 2005;237(1):288–94. PubMed PMID: 16183936.

    Article  PubMed  Google Scholar 

  18. Harned 2nd RK, Strain JD. MRI-compatible audio/visual system: impact on pediatric sedation. Pediatr Radiol. 2001;31(4):247–50. PubMed PMID: 11321741.

    Article  PubMed  Google Scholar 

  19. Edwards AD, Arthurs OJ. Paediatric MRI under sedation: is it necessary? What is the evidence for the alternatives? Pediatr Radiol. 2011;41(11):1353–64. PubMed PMID: 21678113.

    Article  PubMed  Google Scholar 

  20. Stippich C. Preoperative Blood Oxygen Level Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) of motor and somatosensory function. In: Ulmer S, Jansen O, editors. FMRI: basics and clinical applications. Heidelberg: Springer; 2013. p. 91–110.

    Chapter  Google Scholar 

  21. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34(1):51–61. PubMed PMID: 18157658.

    Article  CAS  PubMed  Google Scholar 

  22. De Belder FE, Oot AR, Van Hecke W, Venstermans C, Menovsky T, Van Marck V, et al. Diffusion tensor imaging provides an insight into the microstructure of meningiomas, high-grade gliomas, and peritumoral edema. J Comput Assist Tomogr. 2012;36(5):577–82. PubMed PMID: 22992609.

    Article  PubMed  Google Scholar 

  23. Palmer SL, Glass JO, Li Y, Ogg R, Qaddoumi I, Armstrong GT, et al. White matter integrity is associated with cognitive processing in patients treated for a posterior fossa brain tumor. Neuro Oncol. 2012;14(9):1185–93. PubMed PMID: 22898373. Pubmed Central PMCID: 3424215.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Stapleton SR, Kiriakopoulos E, Mikulis D, Drake JM, Hoffman HJ, Humphreys R, et al. Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg. 1997;26(2):68–82. PubMed PMID: 9419036.

    Article  CAS  PubMed  Google Scholar 

  25. Chernov MF, Ono Y, Abe K, Usukura M, Hayashi M, Izawa M, Diment SV, Ivanov PI. Differentiation of tumor progression and induced effects after intracranial radiosurgery. Acta Neurochir Suppl. 2013;116:193–210.

    PubMed  Google Scholar 

  26. Petrirena GJ, Goldman S, Delattre JY. Advances in PET imaging of brain tumors: a referring physician’s perspective. Curr Opin Oncol. 2011;23(6):617–23. PubMed PMID: 21825989.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011;17(1):130–4. PubMed PMID: 21170048. Pubmed Central PMCID: 3058561.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Rodrigues Stein M.D., M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stein, N.R., Ribeiro, L.T. (2015). Pediatric Neuroimaging. In: Scheinemann, K., Bouffet, E. (eds) Pediatric Neuro-oncology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1541-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1541-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1540-8

  • Online ISBN: 978-1-4939-1541-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics