Skip to main content

Advertisement

Log in

Advances in Lower Extremity Ultrasound

  • Musculoskeletal Ultrasound (D Fessell, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Diagnostic ultrasound techniques used in the evaluation of the musculoskeletal system are rapidly evolving. Conventional B-mode and Doppler ultrasound imaging methods are workhorses in the diagnosis and treatment decision making for traumatic and pathologic conditions of joints, tendons, muscles, ligaments, and peripheral nerves. Recently developed sonoelastography techniques enable the qualitative and quantitative evaluation of the material properties of musculoskeletal tissues . The recent availability of sonoelastography on clinical machines will facilitate its progressive utilization in routine clinical practice. Exciting new developments in ultrasound imaging enable real-time fusion with imported magnetic resonance or computed tomography images, facilitating ultrasound-guided interventional procedures and teaching of ultrasound anatomy to trainees. In this review article, the authors discuss new advances in sonoelastography of the lower extremity with emphasis on shear wave imaging and briefly the exciting features of ultrasound fusion imaging with computed tomography and magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance

  1. Jacobson JA. Musculoskeletal ultrasound: focused impact on MRI. Am J Roentgenol. 2009;193(3):619–27.

    Article  Google Scholar 

  2. Bracken J, Ditchfield M. Ultrasonography in developmental dysplasia of the hip: what have we learned? Pediatr Radiol. 2012;42(12):1418–31. doi:10.1007/s00247-012-2429-8.

    Article  PubMed  Google Scholar 

  3. Royall NA, Farrin E, Bahner DP, Stawicki SP. Ultrasound-assisted musculoskeletal procedures: a practical overview of current literature. World J Orthop. 2011;2(7):57–66. doi:10.5312/wjo.v2.i7.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Robotti G, Canepa MG, Bortolotto C, Draghi F. Interventional musculoskeletal US: an update on materials and methods. J Ultrasound. 2013;16(2):45–55. doi:10.1007/s40477-013-0018-9.

    Article  PubMed Central  PubMed  Google Scholar 

  5. James SL, Ali K, Pocock C, Robertson C, Walter J, Bell J, et al. Ultrasound guided dry needling and autologous blood injection for patellar tendinosis. Br J Sports Med. 2007;41(8):518–21 (discussion 522).

    Article  PubMed Central  PubMed  Google Scholar 

  6. de Vos RJ, Weir A, van Schie HT, Bierma-Zeinstra SM, Verhaar JA, Weinans H, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA. 2010;303(2):144–9.

    Article  PubMed  Google Scholar 

  7. Lee KS, Rosas HG, Phancao JP. Snapping hip: imaging and treatment. Semin Musculoskelet Radiol. 2013;17(3):286–94. doi:10.1055/s-0033-1348095.

    Article  PubMed  Google Scholar 

  8. Lewis CL. Extra-articular snapping hip: a literature review. Sports Health. 2010;2(3):186–90.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Garbuz DS, Hargreaves BA, Duncan CP, Masri BA, Wilson DR, Forster BB. The John Charnley award: diagnostic accuracy of MRI versus ultrasound for detecting pseudotumors in asymptomatic metal-on-metal THA. Clin Orthop Relat Res. 2014;472(2):417–23. doi:10.1007/s11999-013-3181-6.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Nishii T, Sakai T, Takao M, Yoshikawa H, Sugano N. Ultrasound screening of periarticular soft tissue abnormality around metal-on-metal bearings. J Arthroplast. 2012;27(6):895–900. doi:10.1016/j.arth.2011.09.015.

    Article  Google Scholar 

  11. Teh J. Applications of Doppler imaging in the musculoskeletal system. Curr Probl Diagn Radiol. 2006;35(1):22–34.

    Article  PubMed  Google Scholar 

  12. Klauser AS, Miyamoto H, Bellmann-Weiler R, Feuchtner GM, Wick MC, Jaschke WR. Sonoelastography: musculoskeletal applications. Radiology. 2014;272(3):622–33. doi:10.1148/radiol.14121765.

    Article  PubMed  Google Scholar 

  13. Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol. 2012;85(1019):1435–45. doi:10.1259/bjr/93042867.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

    Article  CAS  PubMed  Google Scholar 

  15. Ponnekanti H, Ophir J, Huang Y, Céspedes I. Fundamental mechanical limitations on the visualization of elasticity contrast in elastography. Ultrasound Med Biol. 1995;21(4):533–43.

    Article  CAS  PubMed  Google Scholar 

  16. Ophir J, Alam SK, Garra BS, et al. Elastography: imaging the elastic properties of soft tissues with ultrasound. J Med Ultrason. 2002;29(4):155–71.

    Article  Google Scholar 

  17. Klauser AS, Tagliafico A, Allen GM, et al. Clinical indications for musculoskeletal ultrasound: a Delphi-based consensus paper of the European Society of Musculoskeletal Radiology. Eur Radiol. 2012;22(5):1140–8.

    Article  PubMed  Google Scholar 

  18. Klauser AS, Faschingbauer R, Jaschke WR. Is sonoelastography of value in assessing tendons? Semin Musculoskelet Radiol. 2010;14(3):323–33.

    Article  PubMed  Google Scholar 

  19. • Gao L, Yuan JS, Heden GJ, Szivek JA, Taljanovic MS, Latt LD, Witte RS. Ultrasound elasticity imaging for determining the mechanical properties of human posterior tibial tendon: a cadaveric study. IEEE Trans Biomed Eng. 2014. doi:10.1109/TBME.2014.2381002. The authors measure Young’s modulus of 5 human cadaveric posterior tibial tendons using tension elastography. Although this technique is not yet commercially available, it holds great promise as a new functional imaging test of tendon, which may help guide treatment for degenerative disease of tendons.

  20. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.

    Article  PubMed  Google Scholar 

  21. Li Y, Snedeker JG. Elastography: modality-specific approaches, clinical applications, and research horizons. Skelet Radiol. 2011;40(4):389–97. doi:10.1007/s00256-010-0918-0.

    Article  Google Scholar 

  22. De Zordo T, Chhem R, Smekal V, Feuchtner G, Reindl M, Fink C, Faschingbauer R, Jaschke W, Klauser AS. Real-time sonoelastography: findings in patients with symptomatic achilles tendons and comparison to healthy volunteers. Ultraschall Med. 2010;31(4):394–400. doi:10.1055/s-0028-1109809.

    Article  PubMed  Google Scholar 

  23. De Zordo T, Fink C, Feuchtner GM, Smekal V, Reindl M, Klauser AS. Real-time sonoelastography findings in healthy Achilles tendons. Am J Roentgenol. 2009;193(2):W134–8. doi:10.2214/AJR.08.1843.

    Article  Google Scholar 

  24. Drakonaki EE, Allen GM, Wilson DJ. Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin Radiol. 2009;64(12):1196–202. doi:10.1016/j.crad.2009.08.006.

    Article  CAS  PubMed  Google Scholar 

  25. Tan S, Kudaş S, Özcan AS, İpek A, Karaoğlanoğlu M, Arslan H, Bozkurt M. Real-time sonoelastography of the Achilles tendon: pattern description in healthy subjects and patients with surgically repaired complete ruptures. Skelet Radiol. 2012;41(9):1067–72. doi:10.1007/s00256-011-1339-4.

    Article  Google Scholar 

  26. Klauser AS, Miyamoto H, Tamegger M, et al. Achilles tendon assessed with sonoelastography: histologic agreement. Radiology. 2013;267(3):837–42.

    Article  PubMed  Google Scholar 

  27. Rist HJ, Mauch M. Quantified TDI elastography of the patellar tendon in athletes (in German). Sportverletz Sportschaden. 2012;26(1):27–32.

    Article  PubMed  Google Scholar 

  28. Wu CH, Chang KV, Mio S, Chen WS, Wang TG. Sonoelastography of the plantar fascia. Radiology. 2011;259(2):502–7.

    Article  PubMed  Google Scholar 

  29. Drakonaki EE, Allen GM. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy. Skelet Radiol. 2010;39(4):391–6.

    Article  Google Scholar 

  30. Vasilescu D, Vasilescu D, Dudea S, BotarJid C, Sfrângeu S, Cosma D. Sonoelastography contribution in cerebral palsy spasticity treatment assessment, preliminary report: a systematic review of the literature apropos of seven patients. Med Ultrasound. 2010;12(4):306–10.

    Google Scholar 

  31. Cantisani V, Orsogna N, Porfiri A, Fioravanti C, D’Ambrosio F. Elastographic and contrast-enhanced ultrasound features of a benign schwannoma of the common fibular nerve. J Ultrasound. 2013;16(3):135–8. doi:10.1007/s40477-013-0027-8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Arda K, Ciledag N, Aktas E, Aribas BK, Köse K. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. Am J Roentgenol. 2011;197(3):532–6.

    Article  Google Scholar 

  33. • DeWall RJ, Slane LC, Lee KS, Thelen DG. Spatial variations in Achilles tendon shear wave speed. J Biomech. 2014;47(11):2685–2692. doi: 10.1016/j.jbiomech.2014.05.008. The results of this study showed that shear wave speed is closely linked to the spatial position along the Achilles tendon, varies between the medial and lateral sides, and depends directly on ankle posture. These observations demonstrated the critical importance of considering both spatial location and posture when using SWE for biomechanical or clinical evaluations of the Achilles tendon.

  34. Chen XM, Cui LG, He P, Shen WW, Qian YJ, Wang JR. Shear wave elastographic characterization of normal and torn achilles tendons: a pilot study. J Ultrasound Med. 2013;32(3):449–55.

    PubMed  Google Scholar 

  35. Aubry S, Nueffer JP, Tanter M, Becce F, Vidal C, Michel F. Viscoelasticity in achilles tendonopathy: quantitative assessment by using real-time shear-wave elastography. Radiology. 2015;274(3):821–9. doi:10.1148/radiol.14140434.

    Article  PubMed  Google Scholar 

  36. Zhang ZJ, Ng GY, Lee WC, Fu SN. Changes in morphological and elastic properties of patellar tendon in athletes with unilateral patellar tendinopathy and their relationships with pain and functional disability. PLoS One. 2014;9(10):e108337. doi:10.1371/journal.pone.0108337.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Shinohara M, Sabra K, Gennisson JL, Fink M, Tanter M. Real-time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction. Muscle Nerve. 2010;42(3):438–41.

    Article  PubMed  Google Scholar 

  38. Wang CZ, Li TJ, Zheng YP. Shear modulus estimation on vastus intermedius of elderly and young females over the entire range of isometric contraction. PLoS One. 2014;9(7):e101769. doi:10.1371/journal.pone.0101769.

    Article  PubMed Central  PubMed  Google Scholar 

  39. • Lacourpaille L, Hug F, Guével A, Péréon Y, Magot A, Hogrel JY, Nordez A. Non-invasive assessment of muscle stiffness in patients with duchenne muscular dystrophy. Muscle Nerve. 2014. doi: 10.1002/mus.24445. The study revealed significantly higher stiffness in DMD patients compared to controls for all the muscles suggesting that SWE is a sensitive non-invasive technique to assess the increase in muscle stiffness associated with DMD.

  40. Kantarci F, Ustabasioglu FE, Delil S, Olgun DC, Korkmazer B, Dikici AS, Tutar O, Nalbantoglu M, Uzun N, Mihmanli I. Median nerve stiffness measurement by shear wave elastography: a potential sonographic method in the diagnosis of carpal tunnel syndrome. Eur Radiol. 2014;24(2):434–40. doi:10.1007/s00330-013-3023-7.

    Article  PubMed  Google Scholar 

  41. Palmeri ML, Dahl JJ, MacLeod DB, Grant SA, Nightingale KR. On the feasibility of imaging peripheral nerves using acoustic radiation force impulse imaging. Ultrason Imaging. 2009;31(3):172–82.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Aubry S, Risson JR, Barbier-Brion B, Tatu L, Vidal C, Kastler B. Transient elastography of calcaneal tendon: preliminary results and future prospects (in French). J Radiol. 2011;92(5):421–7.

    Article  CAS  PubMed  Google Scholar 

  43. Nordez A, Gennisson JL, Casari P, Catheline S, Cornu C. Characterization of muscle belly elastic properties during passive stretching using transient elastography. J Biomech. 2008;41(10):2305–11.

    Article  CAS  PubMed  Google Scholar 

  44. Klauser AS, De Zordo T, Feuchtner GM, Djedovic G, Weiler RB, Faschingbauer R, Schirmer M, Moriggl B. Fusion of real-time US with CT images to guide sacroiliac joint injection in vitro and in vivo. Radiology. 2010;256(2):547–53. doi:10.1148/radiol.10090968.

    Article  PubMed  Google Scholar 

  45. • Vollman A, Hulen R, Dulchavsky S, Pinchcofsky H, Amponsah D, Jacobsen G, Dulchavsky A, van Holsbeeck M. Educational benefits of fusing magnetic resonance imaging with sonograms. J Clin Ultrasound. 2014;42(5):257–263. doi: 10.1002/jcu.22136. The authors emphasized the value of fusion US and MR images in teaching radiology residents US anatomy.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihra S. Taljanovic.

Additional information

This article is part of the Topical Collection on Musculoskeletal Ultrasound.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taljanovic, M.S., Melville, D.M., Klauser, A.S. et al. Advances in Lower Extremity Ultrasound. Curr Radiol Rep 3, 19 (2015). https://doi.org/10.1007/s40134-015-0100-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-015-0100-5

Keywords

Navigation