Skip to main content

Advertisement

Log in

Predicting the Future of Patients with Obstructive Uropathy—A Comprehensive Review

  • Renal (D Noone, Section Editor)
  • Published:
Current Pediatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This educational review aims to describe available tools that can be utilized for outcome prediction for children with obstructive uropathy.

Recent Findings

New approaches focus on personalized assessment or precision medicine enhanced with machine-learning tools for diagnostics and outcome prediction. In addition, tailored early interventions and the introduction of minimally invasive techniques are likely to impact the future management of obstructive uropathies significantly.

Summary

Obstructive uropathies represent a series of conditions that affect the urinary tract and can be associated with substantial morbidity. Timely diagnosis and management remain challenging. Developing novel methods that enable targeted optimization and personalized care is a matter of intense research. Machine learning tools, prenatal interventions, and minimally invasive operating techniques hold great promise in improving outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nguyen HT, Herndon CDA, Cooper C, Gatti J, Kirsch A, Kokorowski P, Campbell JB. The Society for Fetal Urology consensus statement on the evaluation and management of antenatal hydronephrosis. J Pediatr Urol. 2010;6(3):212–31. https://doi.org/10.1016/j.jpurol.2010.02.205.

    Article  PubMed  Google Scholar 

  2. Sairam S, Al-Habib A, Sasson S, Thilaganathan B. Natural history of fetal hydronephrosis diagnosed on mid-trimester ultrasound. Ultrasound Obstet Gynecol. 2001;17(3):191–6. https://doi.org/10.1046/j.1469-0705.2001.00333.x.

    Article  CAS  PubMed  Google Scholar 

  3. Oliveira EA, Oliveira MCL, Mak RH. Evaluation and management of hydronephrosis in the neonate. Curr Opin Pediatr. 2016;28(2):195–201. https://doi.org/10.1097/MOP.0000000000000321.

    Article  PubMed  Google Scholar 

  4. Chiodini B, Ghassemi M, Khelif K, Ismaili K. Clinical outcome of children with antenatally diagnosed hydronephrosis. Front Pediatr. 2019;7:103. https://doi.org/10.3389/fped.2019.00103.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Capolicchio J-P, Braga LH, Szymanski KM. Canadian Urological Association/Pediatric Urologists of Canada guideline on the investigation and management of antenatally detected hydronephrosis. Can Urol Assoc J. 2018;12(4):85–92. https://doi.org/10.5489/cuaj.5094.

    Article  PubMed  Google Scholar 

  6. Moxey-Mims M, Raju TNK. Anhydramnios in the setting of renal malformations: the National Institutes of Health workshop summary. Obstet Gynecol. 2018;131(6):1069–79. https://doi.org/10.1097/AOG.0000000000002637.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Capone V, Persico N, Berrettini A, Decramer S, De Marco EA, De Palma D, Montini G. Definition, diagnosis and management of fetal lower urinary tract obstruction: consensus of the ERKNet CAKUT-Obstructive Uropathy Work Group. Nat Rev Urol. 2022. https://doi.org/10.1038/s41585-022-00563-8.

    Article  PubMed  Google Scholar 

  8. Radmayr C, Tekgul S. Paediatric urology and the dilemma of low-quality evidence for the management of common urological conditions (vesicoureteral reflux, lower urinary tract dysfunction, undescended testis) in children. Eur Urol Focus. 2017;3(2–3):308–9. https://doi.org/10.1016/j.euf.2017.03.012.

    Article  PubMed  Google Scholar 

  9. Radmayr (Chair) C, Bogaert G, Dogan HS, Nijman (Vice-chair) JM, Rawashdeh YFH, Silay MS, Stein R, S. Tekgül Guidelines Associates: L.A. ‘t Hoen, J. Quaedackers, N. Bhatt. (2021). EAU guidelines on paediatric urology. Retrieved from https://uroweb.org/wp-content/uploads/EAU-Guidelines-on-Paediatric-Urology-2021-1.pdf

  10. Veyrac C, Baud C, Lopez C, Couture A, Saguintaah M, Averous M. The value of colour Doppler ultrasonography for identification of crossing vessels in children with pelvi-ureteric junction obstruction. Pediatr Radiol. 2003;33(11):745–51. https://doi.org/10.1007/s00247-003-1012-8.

    Article  PubMed  Google Scholar 

  11. Mudrik-Zohar H, Meizner I, Bar-Sever Z, Ben-Meir D, Davidovits M. Prenatal sonographic predictors of postnatal pyeloplasty in fetuses with isolated hydronephrosis. Prenat Diagn. 2015;35(2):142–7. https://doi.org/10.1002/pd.4505.

    Article  PubMed  Google Scholar 

  12. Cerrolaza JJ, Safdar N, Biggs E, Jago J, Peters CA, Linguraru MG. Renal segmentation from 3D ultrasound via fuzzy appearance models and patient-specific alpha shapes. IEEE Trans Med Imaging. 2016;35(11):2393–402. https://doi.org/10.1109/TMI.2016.2572641.

    Article  PubMed  Google Scholar 

  13. Roshanitabrizi P, Zember J, Sprague BM, Hoefer S, Sanchez-Jacob R, Jago J, Linguraru MG. Standardized analysis of kidney ultrasound images for the prediction of pediatric hydronephrosis severity. In: Lian C, Cao X, Rekik I, Xu X, Yan P, editors. Machine learning in medical imaging. Cham: Springer International Publishing; 2021. p. 366–75.

    Chapter  Google Scholar 

  14. Mallik M, Watson AR. Antenatally detected urinary tract abnormalities: more detection but less action. Pediatr Nephrol (Berlin, Germany). 2008;23(6):897–904. https://doi.org/10.1007/s00467-008-0746-9.

    Article  Google Scholar 

  15. Park JM, Bloom DA. The pathophysiology of UPJ obstruction Current concepts. Urol Clin North Am. 1998;25(2):161–9. https://doi.org/10.1016/s0094-0143(05)70004-5.

    Article  CAS  PubMed  Google Scholar 

  16. Karnak I, Woo LL, Shah SN, Sirajuddin A, Kay R, Ross JH. Prenatally detected ureteropelvic junction obstruction: clinical features and associated urologic abnormalities. Pediatr Surg Int. 2008;24(4):395–402. https://doi.org/10.1007/s00383-008-2112-1.

    Article  PubMed  Google Scholar 

  17. Woodward M, Frank D. Postnatal management of antenatal hydronephrosis. BJU Int. 2002;89(2):149–56. https://doi.org/10.1046/j.1464-4096.2001.woodward.2578.x.

    Article  CAS  PubMed  Google Scholar 

  18. Tondeur M, Nogarède C, Donoso G, Piepsz A. Inter- and intra-observer reproducibility of quantitative renographic parameters of differential function and renal drainage in children. Scand J Clin Lab Invest. 2013;73(5):414–21. https://doi.org/10.3109/00365513.2013.797597.

    Article  PubMed  Google Scholar 

  19. Mei H, Pu J, Yang C, Zhang H, Zheng L, Tong Q. Laparoscopic versus open pyeloplasty for ureteropelvic junction obstruction in children: a systematic review and meta-analysis. J Endourol. 2011;25(5):727–36. https://doi.org/10.1089/end.2010.0544.

    Article  PubMed  Google Scholar 

  20. Anderson JC, Hynes W. Retrocaval ureter; a case diagnosed pre-operatively and treated successfully by a plastic operation. Br J Urol. 1949;21(3):209–14. https://doi.org/10.1111/j.1464-410x.1949.tb10773.x.

    Article  CAS  PubMed  Google Scholar 

  21. Rubenwolf P, Herrmann-Nuber J, Schreckenberger M, Stein R, Beetz R. Primary non-refluxive megaureter in children: single-center experience and follow-up of 212 patients. Int Urol Nephrol. 2016;48(11):1743–9. https://doi.org/10.1007/s11255-016-1384-y.

    Article  CAS  PubMed  Google Scholar 

  22. Farrugia M-K, Hitchcock R, Radford A, Burki T, Robb A, Murphy F, British Association of Paediatric Urologists. British Association of Paediatric Urologists consensus statement on the management of the primary obstructive megaureter. J Pediatr Urol. 2014;10(1):26–33. https://doi.org/10.1016/j.jpurol.2013.09.018.

    Article  PubMed  Google Scholar 

  23. Braga LH, D’Cruz J, Rickard M, Jegatheeswaran K, Lorenzo AJ. The fate of primary nonrefluxing megaureter: a prospective outcome analysis of the rate of urinary tract infections, surgical indications and time to resolution. J Urol. 2016;195(4 Pt 2):1300–5. https://doi.org/10.1016/j.juro.2015.11.049.

    Article  PubMed  Google Scholar 

  24. Braga LH, Farrokhyar F, D’Cruz J, Pemberton J, Lorenzo AJ. Risk factors for febrile urinary tract infection in children with prenatal hydronephrosis: a prospective study. J Urol. 2015;193(5 Suppl):1766–71. https://doi.org/10.1016/j.juro.2014.10.091.

    Article  PubMed  Google Scholar 

  25. Holzman SA, Braga LH, Zee RS, Herndon CDA, Davis-Dao CA, Kern NG, Khoury AE. Risk of urinary tract infection in patients with hydroureter: an analysis from the Society of Fetal Urology Prenatal Hydronephrosis Registry. J Pediatr Urol. 2021;17(6):775–81. https://doi.org/10.1016/j.jpurol.2021.09.001.

    Article  PubMed  Google Scholar 

  26. Lee JH, Choi HS, Kim JK, Won H-S, Kim KS, Moon DH, Park YS. Nonrefluxing neonatal hydronephrosis and the risk of urinary tract infection. J Urol. 2008;179(4):1524–8. https://doi.org/10.1016/j.juro.2007.11.090.

    Article  PubMed  Google Scholar 

  27. Angulo JM, Arteaga R, Rodríguez Alarcón J, Calvo MJ. Role of retrograde endoscopic dilatation with balloon and derivation using double pig-tail catheter as an initial treatment for vesico-ureteral junction stenosis in children. Cir Pediatr. 1998;11(1):15–8.

    CAS  PubMed  Google Scholar 

  28. Kassite I, RenauxPetel M, Chaussy Y, Eyssartier E, Alzahrani K, Sczwarc C, Binet A. High pressure balloon dilatation of primary obstructive megaureter in children: a multicenter study. Front Pediatr. 2018;6:329. https://doi.org/10.3389/fped.2018.00329.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rickard M, Santos JD, Keunen J, Lorenzo AJ. Prenatal hydronephrosis: bridging pre- and postnatal management. Prenat Diagn. 2022. https://doi.org/10.1002/pd.6114. This paper proposes a management pathway and combines prenatal ultrasound findings with immediate postnatal management recommendations.

    Article  PubMed  Google Scholar 

  30. Rickard M, Chua M, Kim JK, Keefe DT, Milford K, Hannick JH, Lorenzo AJ. Evolving trends in peri-operative management of pediatric ureteropelvic junction obstruction: working towards quicker recovery and day surgery pyeloplasty. World J Urol. 2021;39(9):3677–84. https://doi.org/10.1007/s00345-021-03621-9.

    Article  PubMed  Google Scholar 

  31. Rickard M, Lorenzo AJ, Braga LH, Munoz C. Parenchyma-to-hydronephrosis area ratio is a promising outcome measure to quantify upper tract changes in infants with high-grade prenatal hydronephrosis. Urology. 2017;104:166–71. https://doi.org/10.1016/j.urology.2017.01.015.

    Article  PubMed  Google Scholar 

  32. Lin Y, Khong P-L, Zou Z, Cao P. Evaluation of pediatric hydronephrosis using deep learning quantification of fluid-to-kidney-area ratio by ultrasonography. Abdominal Radiology. 2021;46(11):5229–39. https://doi.org/10.1007/s00261-021-03201-w.

    Article  PubMed  Google Scholar 

  33. Rickard M, Braga LH, Oliveria J-P, Romao R, Demaria J, Lorenzo AJ. Percent improvement in renal pelvis antero-posterior diameter (PI-APD): prospective validation and further exploration of cut-off values that predict success after pediatric pyeloplasty supporting safe monitoring with ultrasound alone. J Pediatr Urol. 2016;12(4):228.e1-6. https://doi.org/10.1016/j.jpurol.2016.04.003.

    Article  CAS  PubMed  Google Scholar 

  34. Romao RLP, Farhat WA, Pippi Salle JL, Braga LHP, Figueroa V, Bägli DJ, Lorenzo AJ. Early postoperative ultrasound after open pyeloplasty in children with prenatal hydronephrosis helps identify low risk of recurrent obstruction. J Urol. 2012;188(6):2347–53. https://doi.org/10.1016/j.juro.2012.08.036.

    Article  PubMed  Google Scholar 

  35. Kwong JCC, McLoughlin LC, Haider M, Goldenberg MG, Erdman L, Rickard M, Kulkarni GS. Standardized reporting of machine learning applications in urology: the STREAM-URO framework. Eur Urol Focus. 2021;7(4):672–82. https://doi.org/10.1016/j.euf.2021.07.004. Since the focus of our paper is about technology and predicting the future, most new research is focusing on ML models to do this. This reference is a framework for writing ML research in urology and should be followed when publishing this type of research.

    Article  PubMed  Google Scholar 

  36. Lorenzo AJ, Rickard M, Braga LH, Guo Y, Oliveria J-P. Predictive analytics and modeling employing machine learning technology: the next step in data sharing, analysis, and individualized counseling explored with a large, prospective prenatal hydronephrosis database. Urology. 2019;123:204–9. https://doi.org/10.1016/j.urology.2018.05.041.

    Article  PubMed  Google Scholar 

  37. Li B, McGrath M, Farrokhyar F, Braga LH. Ultrasound-based scoring system for indication of pyeloplasty in patients with UPJO-like hydronephrosis. Front Pediatr. 2020;8:353. https://doi.org/10.3389/fped.2020.00353.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Smail LC, Dhindsa K, Braga LH, Becker S, Sonnadara RR. Using deep learning algorithms to grade hydronephrosis severity: toward a clinical adjunct. Front Pediatr. 2020;8:1. https://doi.org/10.3389/fped.2020.00001.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sebastião YV, Cooper JN, Becknell B, Ching CB, McLeod DJ. Prediction of kidney failure in children with chronic kidney disease and obstructive uropathy. Pediatr Nephrol (Berlin, Germany). 2021;36(1):111–8. https://doi.org/10.1007/s00467-020-04661-w.

    Article  Google Scholar 

  40. Drysdale E, Khondker A, Kim JK, Kwong JCC, Erdman L, Chua M, Lorenzo AJ. Personalized application of machine learning algorithms to identify pediatric patients at risk for recurrent ureteropelvic junction obstruction after dismembered pyeloplasty. World J Urol. 2021. https://doi.org/10.1007/s00345-021-03879-z.

    Article  PubMed  Google Scholar 

  41. Erdman, L., Skreta, M., Rickard, M., McLean, C., Mezlini, A., Keefe, D., Goldenberg, A. (2020) Predicting obstructive hydronephrosis based on ultrasound alone. https://doi.org/10.1007/978-3-030-59716-0_47. The first model to accurately predict the presence of obstructive uropathies from early postnatal ultrasound images alone.

  42. Khondker A, Kwong JCC, Rickard M, Skreta M, Keefe DT, Lorenzo AJ, Erdman L. A machine learning-based approach for quantitative grading of vesicoureteral reflux from voiding cystourethrograms: methods and proof of concept. J Pediatr Urol. 2021;S1477–5131(21):00473–83. https://doi.org/10.1016/j.jpurol.2021.10.009.

    Article  Google Scholar 

  43. Anumba DO, Scott JE, Plant ND, Robson SC. Diagnosis and outcome of fetal lower urinary tract obstruction in the northern region of England. Prenat Diagn. 2005;25(1):7–13. https://doi.org/10.1002/pd.1074.

    Article  PubMed  Google Scholar 

  44. Farrugia M-K. Fetal bladder outflow obstruction: interventions, outcomes and management uncertainties. Early Human Dev. 2020;150:105189. https://doi.org/10.1016/j.earlhumdev.2020.105189.

    Article  Google Scholar 

  45. Sharma S, Joshi M, Gupta DK, Abraham M, Mathur P, Mahajan JK, Basu AK. Consensus on the management of posterior urethral valves from antenatal period to puberty. J Indian Assoc Pediatr Surg. 2019;24(1):4–14. https://doi.org/10.4103/jiaps.JIAPS_148_18.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ethun CG, Zamora IJ, Roth DR, Kale A, Cisek L, Belfort MA, Cass DL. Outcomes of fetuses with lower urinary tract obstruction treated with vesicoamniotic shunt: a single-institution experience. J Pediatr Surg. 2013;48(5):956–62. https://doi.org/10.1016/j.jpedsurg.2013.02.011.

    Article  PubMed  Google Scholar 

  47. Farrugia M-K. Fetal bladder outlet obstruction: embryopathology, in utero intervention and outcome. J Pediatr Urol. 2016;12(5):296–303. https://doi.org/10.1016/j.jpurol.2016.05.047.

    Article  PubMed  Google Scholar 

  48. Keefe DT, Kim JK, Mackay E, Chua M, Van Mieghem T, Yadav P, Rickard M. Predictive accuracy of prenatal ultrasound findings for lower urinary tract obstruction: a systematic review and Bayesian meta-analysis. Prenat Diagn. 2021;41(9):1039–48. https://doi.org/10.1002/pd.6025.

    Article  PubMed  Google Scholar 

  49. Morris RK, Malin GL, Khan KS, Kilby MD. Antenatal ultrasound to predict postnatal renal function in congenital lower urinary tract obstruction: systematic review of test accuracy. BJOG. 2009;116(10):1290–9. https://doi.org/10.1111/j.1471-0528.2009.02194.x.

    Article  CAS  PubMed  Google Scholar 

  50. Dinneen MD, Duffy PG. Posterior urethral valves. Br J Urol. 1996;78(2):275–81. https://doi.org/10.1046/j.1464-410x.1996.10324.x.

    Article  CAS  PubMed  Google Scholar 

  51. Heikkilä J, Holmberg C, Kyllönen L, Rintala R, Taskinen S. Long-term risk of end stage renal disease in patients with posterior urethral valves. J Urol. 2011;186(6):2392–6. https://doi.org/10.1016/j.juro.2011.07.109.

    Article  PubMed  Google Scholar 

  52. Farrugia MK, Braun MC, Peters CA, Ruano R, Herndon CD. Report on The Society for Fetal Urology panel discussion on the selection criteria and intervention for fetal bladder outlet obstruction. J Pediatr Urol. 2017;13(4):345–51. https://doi.org/10.1016/j.jpurol.2017.02.021.

    Article  CAS  PubMed  Google Scholar 

  53. Yadav P, Rickard M, Weaver J, Chua M, Kim JK, Khondker A, Lorenzo AJ. Pre-natal vs post-natal presentation of PUV: a multi-institutional experience. BJU Int. 2022. https://doi.org/10.1111/bju.15708.

    Article  PubMed  Google Scholar 

  54. Ellison JS, Dy GW, Fu BC, Holt SK, Gore JL, Merguerian PA. Neonatal circumcision and urinary tract infections in infants with hydronephrosis. Pediatrics. 2018;142(1):e20173703. https://doi.org/10.1542/peds.2017-3703.

    Article  PubMed  Google Scholar 

  55. Harper L, Blanc T, Peycelon M, Michel JL, Leclair MD, Garnier S, Sauvat F. Circumcision and risk of febrile urinary tract infection in boys with posterior urethral valves: result of the CIRCUP randomized trial. Eur Urol. 2022;81(1):64–72. https://doi.org/10.1016/j.eururo.2021.08.024.

    Article  CAS  PubMed  Google Scholar 

  56. Chua M, Kim JK. (Justin), Van Miegham T, Santos JD, Mackay E, Erdman L, Rickard M. MP17–05 configuration and validation of the Toronto nomogram of antenatal ultrasound index generated from bayesian meta-regression analysis in predicting posterior urethral valves (PUV). J Urol. 2022 ;207(Supplement 5). https://doi.org/10.1097/JU.0000000000002550.05

  57. Fontanella F, Duin LK, Adama van Scheltema PN, Cohen-Overbeek TE, Pajkrt E, Bekker M, Bilardo CM. Prenatal diagnosis of LUTO: improving diagnostic accuracy. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2018;52(6):739–43. https://doi.org/10.1002/uog.18990.

    Article  CAS  Google Scholar 

  58. Fontanella F, Groen H, Duin LK, Suresh S, Bilardo CM. Z-scores of fetal bladder size for antenatal differential diagnosis between posterior urethral valves and urethral atresia. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2021;58(6):875–81. https://doi.org/10.1002/uog.23647.

    Article  CAS  Google Scholar 

  59. Fontanella F, van Scheltema PNA, Duin L, Cohen-Overbeek TE, Pajkrt E, Bekker MN, Bilardo CM. Antenatal staging of congenital lower urinary tract obstruction. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2019;53(4):520–4. https://doi.org/10.1002/uog.19172.

    Article  CAS  Google Scholar 

  60. Ruano R, Dunn T, Braun MC, Angelo JR, Safdar A. Lower urinary tract obstruction: fetal intervention based on prenatal staging. Pediatr Nephrol (Berlin, Germany). 2017;32(10):1871–8. https://doi.org/10.1007/s00467-017-3593-8.

    Article  Google Scholar 

  61. Nassr AA, Erfani H, Espinoza J, Sanz Cortes M, Donepudi R, Koh CJ, Shamshirsaz AA. Novel scoring system for determining fetal candidacy for prenatal intervention for severe congenital lower urinary tract obstruction. Eur J Obstet Gynecol Reprod Biol. 2021;262:118–23. https://doi.org/10.1016/j.ejogrb.2021.05.015.

    Article  PubMed  Google Scholar 

  62. Moscardi PRM, Katsoufis CP, Jahromi M, Blachman-Braun R, DeFreitas MJ, Kozakowski K, Alam A. Prenatal renal parenchymal area as a predictor of early end-stage renal disease in children with vesicoamniotic shunting for lower urinary tract obstruction. J Pediatr Urol. 2018;14(4):320.e1-320.e6. https://doi.org/10.1016/j.jpurol.2018.07.004.

    Article  PubMed  Google Scholar 

  63. Duin LK, Fontanella F, Groen H, Adama van Scheltema PN, Cohen-Overbeek TE, Pajkrt E, Bilardo CM. Prediction model of postnatal renal function in fetuses with lower urinary tract obstruction (LUTO)—development and internal validation. Prenat Diagn. 2019;39(13):1235–41. https://doi.org/10.1002/pd.5573.

    Article  CAS  PubMed  Google Scholar 

  64. Hindryckx A, De Catte L. Prenatal diagnosis of congenital renal and urinary tract malformations. Facts Views Vision ObGyn. 2011;3(3):165–74.

    CAS  Google Scholar 

  65. Spaggiari E, Faure G, Dreux S, Czerkiewicz I, Stirnemann JJ, Guimiot F, Muller F. Sequential fetal serum β2-microglobulin to predict postnatal renal function in bilateral or low urinary tract obstruction. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2017;49(5):617–22. https://doi.org/10.1002/uog.15968.

    Article  CAS  Google Scholar 

  66. Morris RK, Quinlan-Jones E, Kilby MD, Khan KS. Systematic review of accuracy of fetal urine analysis to predict poor postnatal renal function in cases of congenital urinary tract obstruction. Prenat Diagn. 2007;27(10):900–11. https://doi.org/10.1002/pd.1810.

    Article  CAS  PubMed  Google Scholar 

  67. Klein J, Lacroix C, Caubet C, Siwy J, Zürbig P, Dakna M, Schanstra JP. Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV). Sci Transl Med. 2013;5(198):198ra106. https://doi.org/10.1126/scitranslmed.3005807.

    Article  CAS  PubMed  Google Scholar 

  68. Buffin-Meyer B, Klein J, van der Zanden LFM, Levtchenko E, Moulos P, Lounis N, ANTENATAL Consortium. The ANTENATAL multicentre study to predict postnatal renal outcome in fetuses with posterior urethral valves: objectives and design. Clin Kidney J. 2020;13(3):371–9. https://doi.org/10.1093/ckj/sfz107.

    Article  PubMed  Google Scholar 

  69. Vasconcelos MA, E Silva ACS, Gomes IR, Carvalho RA, Pinheiro SV, Colosimo EA, Oliveira EA. A clinical predictive model of chronic kidney disease in children with posterior urethral valves. Pediatr Nephrol (Berlin, Germany). 2019;34(2):283–94. https://doi.org/10.1007/s00467-018-4078-0.

    Article  Google Scholar 

  70. Wu CQ, Blum ES, Patil D, Shin HS, Smith EA. Predicting childhood chronic kidney disease severity in infants with posterior urethral valve: a critical analysis of creatinine values in the first year of life. Pediatr Nephrol (Berlin, Germany). 2021. https://doi.org/10.1007/s00467-021-05271-w.

    Article  Google Scholar 

  71. Delefortrie T, Ferdynus C, Paye-Jaouen A, Peycelon M, Michel JL, Dobremez E, Harper L. Nadir creatinine predicts long-term bladder function in boys with posterior urethral valves. J Pediatr Urol. 2022;S1477–5131(22):00054–7. https://doi.org/10.1016/j.jpurol.2022.01.017.

    Article  Google Scholar 

  72. Ge Z, Tang L, Peng Y, Zhang M, Tang J, Yang X, Yuan G. Design of a rapid diagnostic model for bladder compliance based on real-time intravesical pressure monitoring system. Comput Biol Med. 2022;141:105173. https://doi.org/10.1016/j.compbiomed.2021.105173.

    Article  PubMed  Google Scholar 

  73. Kwong JC, Khondker A, Kim JK, Chua M, Keefe DT, Dos Santos J, Lorenzo AJ. Posterior Urethral Valves Outcomes Prediction (PUVOP): a machine learning tool to predict clinically relevant outcomes in boys with posterior urethral valves. Pediatr Nephrol (Berlin, Germany). 2021. https://doi.org/10.1007/s00467-021-05321-3.

    Article  Google Scholar 

  74. Abdovic S, Cuk M, Cekada N, Milosevic M, Geljic A, Fusic S, Bahtijarevic Z. Predicting posterior urethral obstruction in boys with lower urinary tract symptoms using deep artificial neural network. World J Urol. 2019;37(9):1973–9. https://doi.org/10.1007/s00345-018-2588-9.

    Article  CAS  PubMed  Google Scholar 

  75. Zheng Q, Furth SL, Tasian GE, Fan Y. Computer-aided diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data by integrating texture image features and deep transfer learning image features. J Pediatr Urol. 2019;15(1):75.e1-75.e7. https://doi.org/10.1016/j.jpurol.2018.10.020.

    Article  CAS  PubMed  Google Scholar 

  76. Weaver J, Milford K, Rickard M, Jiao Z, Viteri B, Erdman L, Tasian G (2021) MP44-04 deep learning based algorithm assessment of ultrasound images predicts the development of renal failure in children with posterior urethral valves. J Urol206. https://doi.org/10.1097/JU.0000000000002065.04

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Chua.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Renal

Electronic supplementary material

Below is the link to the electronic supplementary material.

40124_2022_272_Fig2_ESM.png

Supplementary file1 Sample image of ML-tool for prediction of recurrent UPJO and re-intervention after pyeloplasty [40]. (PNG 1328 KB)

40124_2022_272_Fig3_ESM.png

Supplementary file2 Grad-CAM heatmap outlining of CNN-model for differentiation between resolving and obstructive HN [41•]. (PNG 1532 KB)

40124_2022_272_Fig4_ESM.png

Supplementary file3 Sample image of the Posterior Urethral Valves Outcomes Prediction (PUVOP) tool [73]. (PNG 1335 KB)

Supplementary file4 (DOCX 14 KB)

Glossary

Glossary

• Convolutional Neural Networks

A machine learning model which consists of “layers” where inputs are run through with important features being extracted from each layer and sent to the next. This process repeats for each layer, resulting in a summary of important features at the end and a prediction output. In a Siamese CNN, 2 inputs are put through layers simultaneously, and the results merged into a single prediction at the end.

More detailed explanation of Convolutional Siamese Networks with examples:

  • Liu Y, Sui X, Liu C, Kuang X, Hu Y. Automatic Lumbar Spine Tracking Based on Siamese Convolutional Network. J Digit Imaging. 2020 Apr;33(2):423–430. https://doi.org/10.1007/s10278-019-00273-5. PMID: 31,602,548; PMCID: PMC7165228.

  • Chang GH, Felson DT, Qiu S, Guermazi A, Capellini TD, Kolachalama VB. Assessment of knee pain from MR imaging using a convolutional Siamese network. Eur Radiol. 2020 Jun;30(6):3538–3548. https://doi.org/10.1007/s00330-020-06658-3. Epub 2020 Feb 13. Erratum in: Eur Radiol. 2020 Dec;30(12):6968. PMID: 32,055,951; PMCID: PMC7786238.

• Gradient-weighted Class Activation Maps (Grad-CAMs)

Gradient-based heatmaps localizing and visualizing different regions of interest present in images, utilized in convolutional networks. These are used to improve explainability and minimize the black box phenomenon.

Overview of functioning of Grad-CAMs:

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, J., Rickard, M., Kim, J.K. et al. Predicting the Future of Patients with Obstructive Uropathy—A Comprehensive Review. Curr Pediatr Rep 10, 202–213 (2022). https://doi.org/10.1007/s40124-022-00272-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40124-022-00272-1

Keywords

Navigation