Rizek P, Kumar N, Jog MS. An update on the diagnosis and treatment of Parkinson disease. Can Med Assoc J. 2016;188(16):1157–65. https://doi.org/10.1503/cmaj.151179.
Article
Google Scholar
Pandey S, Srivanitchapoom P. Levodopa-induced dyskinesia: clinical features, pathophysiology, and medical management. Ann Indian Acad Neurol. 2017;20(3):190–8.
PubMed
PubMed Central
Google Scholar
Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448–58.
CAS
PubMed
Google Scholar
Maetzler W, Liepelt I, Berg D. Progression of Parkinson’s disease in the clinical phase: potential markers. Lancet Neurol. 2009;8(12):1158–71. https://doi.org/10.1016/S1474-4422(09)70291-1.
CAS
Article
PubMed
Google Scholar
Moosa S, Martínez-Fernández R, Elias WJ, del Alamo M, Eisenberg HM, Fishman PS. The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson’s disease. Mov Disord. 2019;34(9):1243–51.
PubMed
Google Scholar
Ohye C, Higuchi Y, Shibazaki T, et al. Gamma knife thalamotomy for Parkinson disease and essential tremor: a prospective multicenter study. Clin Neurosurg. 2012;70(3):526–35.
Google Scholar
Wirdefeldt K, Odin P, Nyholm D. Levodopa-carbidopa intestinal gel in patients with Parkinson’s disease: a systematic review. CNS Drugs. 2016;30(5):381–404.
CAS
PubMed
Google Scholar
Hartmann CJ, Fliegen S, Groiss SJ, Wojtecki L, Schnitzler A. An update on best practice of deep brain stimulation in Parkinson’s disease. Ther Adv Neurol Disord. 2019;12(6):175628641983809. https://doi.org/10.1177/1756286419838096.
Article
Google Scholar
Abel TJ, Howard MA. Russell Meyers (1905–1999): pioneer of functional and ultrasonic neurosurgery. J Neurosurg. 2016;125(6):1589–95.
PubMed
Google Scholar
Meyers R. Surgical procedure for postencephalitic tremor with notes on the physiology of premotor fibers. Arch Neurol Psychiatry. 1940;44:455–9.
Google Scholar
Hariz MI, Blomstedt P, Zrinzo L. Deep brain stimulation between 1947 and 1987: the untold story. Neurosurg Focus. 2010;29(2):1–10.
Google Scholar
Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–50. https://doi.org/10.1126/science.106.2754.349.
CAS
Article
PubMed
Google Scholar
Cooper IS. Ligation of the anterior choroidal artery for involuntary movements—parkinsonism. Psychiatry Q. 1953;27(1–4):317–9.
CAS
Google Scholar
Narabayashi H, Okuma T. Procaine-oil blocking of the globus pallidus for the treatment of rigidity and tremor of Parkinsonism (preliminary report). Proc Jpn Acad. 1953;29(3):134–7.
Google Scholar
Guiot G, Brion S. Treatment of abnormal movement by pallidal coagulation. Rev Neurol (Paris). 1953;89(6):578–80.
CAS
Google Scholar
Svennilson E, Torvik A, Lowe R, Leksell L. Treatment of parkinsonism by stereotatic thermolesions in the pallidal region. A clinical evaluation of 81 cases. Acta Psychiatr Scand. 1960;35(3):358–77.
CAS
PubMed
Google Scholar
Hassler R, Riechert T. Indications and localization of stereotactic brain operations. Nervenarzt. 1954;25(11):441–7.
CAS
PubMed
Google Scholar
Cotzias GC. L-dopa for Parkinsonism. N Engl J Med. 1968;278(11):630. https://doi.org/10.1056/NEJM196803142781127.
CAS
Article
PubMed
Google Scholar
Laitinen LV, Bergenheim AT, Hariz MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg. 1992;76(1):53–61. https://doi.org/10.3171/jns.1992.76.1.0053.
CAS
Article
PubMed
Google Scholar
Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Stereotact Funct Neurosurg. 1987;50(1–6):344–6.
CAS
Google Scholar
Pollak P, Benabid AL, Gross C, et al. Effects of the stimulation of the subthalamic nucleus in Parkinson disease. Rev Neurol (Paris). 1993;149(3):175–6.
CAS
Google Scholar
Siegfried J, Lippitz B. Bilateral chronic electrostimulation of ventroposterolateral pallidum. Neurosurgery. 1994;35(6):1126–30.
CAS
PubMed
Google Scholar
Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol. 2005;62(4):554–60.
PubMed
Google Scholar
Obeso JA, Olanow CW, Rodriguez-Oroz MC, et al. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956–63.
CAS
PubMed
Google Scholar
Follett KA, Weaver FM, Stern M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362(22):2077–91.
CAS
PubMed
Google Scholar
Rodriguez-Oroz MC, Obeso JA, Lang AE, et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain. 2005;128(10):2240–9.
CAS
PubMed
Google Scholar
Weaver FM, Follett K, Stern M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced parkinson disease: a randomized controlled trial. JAMA. 2009;301(1):63. https://doi.org/10.1001/jama.2008.929.
CAS
Article
PubMed
PubMed Central
Google Scholar
Weaver FM, Follett KA, Stern M, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012;79(1):55–65.
CAS
PubMed
PubMed Central
Google Scholar
Okun MS, Fernandez HH, Wu SS, et al. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol. 2009;65(5):586–95.
PubMed
PubMed Central
Google Scholar
Odekerken VJJ, van Laar T, Staal MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12(1):37–44.
PubMed
Google Scholar
Rothlind JC, York MK, Carlson K, et al. Neuropsychological changes following deep brain stimulation surgery for Parkinson’s disease: comparisons of treatment at pallidal and subthalamic targets versus best medical therapy. J Neurol Neurosurg Psychiatry. 2015;86(6):622–9.
PubMed
Google Scholar
Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12(10):366–75. https://doi.org/10.1016/0166-2236(89)90074-X.
CAS
Article
PubMed
Google Scholar
DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13(7):281–5. https://doi.org/10.1016/0166-2236(90)90110-V.
CAS
Article
PubMed
Google Scholar
Eisinger RS, Cernera S, Gittis A, Gunduz A, Okun MS. A review of basal ganglia circuits and physiology: application to deep brain stimulation. Parkinsonism Relat Disord. 2019. https://doi.org/10.1016/j.parkreldis.2019.01.009.
Article
PubMed
PubMed Central
Google Scholar
Weinberger M, Hutchison WD, Alavi M, et al. Oscillatory activity in the globus pallidus internus: comparison between Parkinson’s disease and dystonia. Clin Neurophysiol. 2012;123(2):358–68. https://doi.org/10.1016/j.clinph.2011.07.029.
Article
PubMed
Google Scholar
Jimenez-Shahed J, Telkes I, Viswanathan A, Ince NF. GPi oscillatory activity differentiates tics from the resting state, voluntary movements, and the unmedicated Parkinsonian state. Front Neurosci. 2016. https://doi.org/10.3389/fnins.2016.00436.
Article
PubMed
PubMed Central
Google Scholar
Piña-Fuentes D, van Zijl JC, van Dijk JMC, et al. The characteristics of pallidal low-frequency and beta bursts could help implementing adaptive brain stimulation in the Parkinsonian and dystonic internal globus pallidus. Neurobiol Dis. 2019;121:47–57. https://doi.org/10.1016/j.nbd.2018.09.014.
Article
PubMed
Google Scholar
Wang DD, de Hemptinne C, Miocinovic S, et al. Pallidal Deep-brain stimulation disrupts pallidal beta oscillations and coherence with primary motor cortex in Parkinsons disease. J Neurosci. 2018;38(19):4556–68. https://doi.org/10.1523/JNEUROSCI.0431-18.2018.
CAS
Article
PubMed
PubMed Central
Google Scholar
Eisinger RS, Cagle J, Opri E, et al. Parkinsonian beta dynamics during rest and movement in the dorsal pallidum and subthalamic nucleus. J Neurosci. 2020. https://doi.org/10.1523/JNEUROSCI.2113-19.2020.
Article
PubMed
PubMed Central
Google Scholar
Tsang EW, Hamani C, Moro E, et al. Movement related potentials and oscillatory activities in the human internal globus pallidus during voluntary movements. J Neurol Neurosurg Psychiatry. 2011;83(1):91–7. https://doi.org/10.1136/jnnp.2011.243857.
Article
PubMed
Google Scholar
Tsiokos C, Malekmohammadi M, AuYong N, Pouratian N. Pallidal low β-low γ phase-amplitude coupling inversely correlates with Parkinson disease symptoms. Clin Neurophysiol. 2017;128(11):2165–78. https://doi.org/10.1016/2Fj.clinph.2017.08.001.
Article
PubMed
PubMed Central
Google Scholar
Liu X, Yianni J, Wang S, Bain PG, Stein JF, Aziz TZ. Different mechanisms may generate sustained hypertonic and rhythmic bursting muscle activity in idiopathic dystonia. Exp Neurol. 2006;198(1):204–13. https://doi.org/10.1016/2Fj.expneurol.2005.11.018.
Article
PubMed
Google Scholar
Brücke C, Kempf F, Kupsch A, et al. Movement-related synchronization of gamma activity is lateralized in patients with dystonia. Eur J Neurosci. 2008;27(9):2322–9. https://doi.org/10.1111/2Fj.1460-9568.2008.06203.x.
Article
PubMed
Google Scholar
Nambu A. Globus pallidus internal segment. Prog Brain Res. 2007;160(06):135–50.
CAS
PubMed
Google Scholar
Mulder MJ, Keuken MC, Bazin P-L, Alkemade A, Forstmann BU. Size and shape matter: the impact of voxel geometry on the identification of small nuclei. PLoS ONE. 2019;14(4):e0215382.
CAS
PubMed
PubMed Central
Google Scholar
Vasques X, Cif L, Hess O, Gavarini S, Mennessier G, Coubes P. Prognostic value of globus pallidus internus volume in primary dystonia treated by deep brain stimulation. J Neurosurg. 2009;110(2):220–8.
PubMed
Google Scholar
Martinez-Ramirez D, Morishita T, Zeilman PR, Peng-Chen Z, Foote KD, Okun MS. Atrophy and other potential factors affecting long term deep brain stimulation response: a case series. PLoS ONE. 2014;9:10.
Google Scholar
Nambu A. Somatotopic organization of the primate basal ganglia. Front Neuroanat. 2011;5:1–9.
Google Scholar
Cacciola A, Milardi D, Bertino S, et al. Structural connectivity-based topography of the human globus pallidus: Implications for therapeutic targeting in movement disorders. Mov Disord. 2019;34(7):987–96.
PubMed
Google Scholar
Ewert S, Plettig P, Li N, et al. Toward defining deep brain stimulation targets in MNI space: a subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage. 2018;170:271–82.
PubMed
Google Scholar
DeLong MR. Activity of pallidal neurons during movement. J Neurophysiol. 1971;34(3):414–27. https://doi.org/10.1152/jn.1971.34.3.414.
CAS
Article
PubMed
Google Scholar
Heilbrun MP, Koehler S, McDonald P, Faour F. Optimal target localization for ventroposterolateral pallidotomy: the role of imaging, impedance measurement, macrostimulation and microelectrode recording. Stereotact Funct Neurosurg. 1997;69(1–4):19–27.
CAS
PubMed
Google Scholar
DeLong MR, Crutcher MD, Georgopoulos AP. Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol. 1985;53(2):530–43. https://doi.org/10.1152/jn.1985.53.2.530.
CAS
Article
PubMed
Google Scholar
Baker KB, Lee JYK, Mavinkurve G, et al. Somatotopic organization in the internal segment of the globus pallidus in Parkinson’s disease. Exp Neurol. 2010;222(2):219–25. https://doi.org/10.1016/j.expneurol.2009.12.030.
CAS
Article
PubMed
PubMed Central
Google Scholar
da Silva NM, Ahmadi SA, Tafula SN, et al. A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS. Neuroimage. 2017;144:83–91. https://doi.org/10.1016/j.neuroimage.2016.06.018.
Article
PubMed
Google Scholar
Laitinen LV. Brain targets in surgery for Parkinson’s disease. J Neurosurg. 1985;62(3):349–51. https://doi.org/10.3171/jns.1985.62.3.0349.
CAS
Article
PubMed
Google Scholar
Sharim J, Yazdi D, Baohan A, Behnke E, Pouratian N. Modeling laterality of the globus pallidus internus in patients with Parkinson’s disease. Neuromodulation. 2017;20(3):238–42.
PubMed
Google Scholar
Pallavaram S, Yu H, Spooner J, et al. Intersurgeon variability in the selection of anterior and posterior commissures and its potential effects on target localization. Stereotact Funct Neurosurg. 2008;86(2):113–9.
PubMed
Google Scholar
Middlebrooks EH, Tuna IS, Grewal SS, et al. Segmentation of the globus pallidus internus using probabilistic diffusion tractography for deep brain stimulation targeting in Parkinson disease. AJNR Am J Neuroradiol. 2018;39(6):1127–34.
CAS
PubMed
PubMed Central
Google Scholar
Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). Neuroimage. 2009;47:44–52.
Google Scholar
Wei H, Zhang C, Wang T, et al. Precise targeting of the globus pallidus internus with quantitative susceptibility mapping for deep brain stimulation surgery. J Neurosurg. 2019. https://doi.org/10.3171/2019.7.jns191254.
Article
PubMed
Google Scholar
Mikos A, Pavon J, Bowers D, et al. Factors related to extended hospital stays following deep brain stimulation for Parkinson’s disease. Parkinsonism Relat Disord. 2010;16(5):324–8.
PubMed
Google Scholar
Holanda V, Almeida L, Okun M, et al. Evolution of globus pallidus internus (GPi) deep brain stimulation targeting over 15 years [abstract]. Mov Disord. 2017;15:148–60.
Google Scholar
Ramirez-Zamora A, Almeida L, Okun MS. Microelectrode recordings in deep brain stimulation surgery for movement disorders, Chap 8. In: Brown JA, Pilitsis JG, Schulder M, editors. Functional Neurosurgery: The Essentials, 1st edn. Thieme Medical Publishers, Incorporated; 2019.
Williams NR, Foote KD, Okun MS. Subthalamic nucleus versus globus pallidus internus deep brain stimulation: translating the rematch into clinical practice. Mov Disord Clin Pract. 2014;1(1):24–35.
PubMed
PubMed Central
Google Scholar
Ramirez-Zamora A, Ostrem JL. Globus pallidus interna or subthalamic nucleus deep brain stimulation for Parkinson disease a review. JAMA Neurol. 2018;75(3):367–72.
PubMed
Google Scholar
Okun MS, Foote KD. Subthalamic nucleus vs globus pallidus interna deep brain stimulation, the rematch: Will pallidal deep brain stimulation make a triumphant return? Arch Neurol. 2005;62(4):533–6.
PubMed
Google Scholar
Volkmann J, Allert N, Voges J, Weiss PH, Freund HJ, Sturm V. Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology. 2001;56(4):548–51.
CAS
PubMed
Google Scholar
Krack P, Pollak P, Limousin P, et al. Opposite motor effects of pallidal stimulation in Parkinson’s disease. Ann Neurol. 1998;43(2):180–92.
CAS
PubMed
Google Scholar
Lyons KE, Wilkinson SB, Tröster AI, Pahwa R. Long-term efficacy of globus pallidus stimulation for the treatment of Parkinson’s disease. Stereotact Funct Neurosurg. 2002;79(3–4):214–20.
PubMed
Google Scholar
Kumar R, Lang AE, Rodriguez-Oroz MC, et al. Deep brain stimulation of the globus pallidus pars interna in advanced Parkinson’s disease. Neurology. 2000;55(12 Suppl 6):S34–9.
CAS
PubMed
Google Scholar
Kumar R, Lozano AM, Montgomery E, Lang AE. Pallidotomy and deep brain stimulation of the pallidum and subthalamic nucleus in advanced Parkinson’s disease. Mov Disord. 1998;13(Suppl 1):73–82.
PubMed
Google Scholar
Gross C, Rougier A, Guehl D, Boraud T, Julien J, Bioulac B. High-frequency stimulation of the globus pallidus internalis in Parkinson’s disease: a study of seven cases. J Neurosurg. 1997;87(4):491–8.
CAS
PubMed
Google Scholar
Volkmann J, Sturm V, Weiss P, et al. Bilateral high-frequency stimulation of the internal globus pallidus in advanced Parkinson’s disease. Ann Neurol. 1998;44(6):953–61.
CAS
PubMed
Google Scholar
Krack P, Pollak P, Limousin P, et al. Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain. 1998;121(3):451–7.
PubMed
Google Scholar
Pahwa R, Wilkinson S, Smith D, Lyons K, Miyawaki E, Koller WC. High-frequency stimulation of the globus pallidus for the treatment of Parkinson’s disease. Neurology. 1997;49(1):249–53.
CAS
PubMed
Google Scholar
Durif F, Lemaire JJ, Debilly B, Dordain G. Acute and chronic effects of anteromedial globus pallidus stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;67(3):315–21.
CAS
PubMed
PubMed Central
Google Scholar
Durif F, Lemaire JJ, Debilly B, Dordain G. Long-term follow-up of globus pallidus chronic stimulation in advanced Parkinson’s disease. Mov Disord. 2002;17(4):803–7.
PubMed
Google Scholar
Ghika J, Villemure JG, Fankhauser H, Favre J, Assal G, Ghika-Schmid F. Efficiency and safety of bilateral contemporaneous pallidal stimulation (deep brain stimulation) in levodopa-responsive patients with parkinson’s disease with severe motor fluctuations: a 2-year follow-up review. J Neurosurg. 1998;89(5):713–8.
CAS
PubMed
Google Scholar
Visser-Vandewalle V, Der Linden C, Van TY, Nieman F, Celik H, Beuls E. Long-term motor effect of unilateral pallidal stimulation in 26 patients with advanced Parkinson disease. J Neurosurg. 2003;99(4):701–7.
PubMed
Google Scholar
Loher TJ, Burgunder JM, Pohle T, Weber S, Sommerhalder R, Krauss JK. Long-term pallidal deep brain stimulation in patients with advanced Parkinson disease: 1-year follow-up study. J Neurosurg. 2002;96(5):844–53.
PubMed
Google Scholar
Krause M, Fogel W, Heck A, et al. Deep brain stimulation for the treatment of Parkinson’s disease: subthalamic nucleus versus globus pallidus internus. J Neurol Neurosurg Psychiatry. 2001;70(4):464–70.
CAS
PubMed
PubMed Central
Google Scholar
Volkmann J, Albanese A, Kulisevsky J, et al. Long-term effects of pallidal or subthalamic deep brain stimulation on quality of life in Parkinson’s disease. Mov Disord. 2009;24(8):1154–61.
PubMed
Google Scholar
Oyama G, Foote KD, Jacobson CE, et al. GPi and STN deep brain stimulation can suppress dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(7):814–8.
PubMed
Google Scholar
Weaver F, Follett K, Hur K, Ippolito D, Stern M. Deep brain stimulation in Parkinson disease: a metaanalysis of patient outcomes. J Neurosurg. 2005;103(6):956–67.
PubMed
Google Scholar
Wong JK, Cauraugh JH, Ho KWD, et al. STN vs GPi deep brain stimulation for tremor suppression in Parkinson disease: a systematic review and meta-analysis. Park Relat Disord. 2019;58:56–62. https://doi.org/10.1016/j.parkreldis.2018.08.017.
Article
Google Scholar
Zahodne LB, Okun MS, Foote KD, et al. Greater improvement in quality of life following unilateral deep brain stimulation surgery in the globus pallidus as compared to the subthalamic nucleus. J Neurol. 2009;256(8):1321–9.
PubMed
PubMed Central
Google Scholar
Burchiel KJ, Anderson VC, Favre J, Hammerstad JP. Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease: Results of a randomized, blinded pilot study. Neurosurgery. 1999;45(6):1375–84.
CAS
PubMed
Google Scholar
Katayama Y, Kasai M, Oshima H, Fukaya C, Yamamoto T, Mizutani T. Double blinded evaluation of the effects of pallidal and subthalamic nucleus stimulation on daytime activity in advanced Parkinson’s disease. Park Relat Disord. 2000;7(1):35–40.
CAS
Google Scholar
Robertson LT, St George RJ, Carlson-Kuhta P, Hogarth P, Burchiel KJ, Horak FB. Site of deep brain stimulation and jaw velocity in Parkinson disease: clinical article. J Neurosurg. 2011;115(5):985–94.
PubMed
PubMed Central
Google Scholar
Rocchi L, Carlson-Kuhta P, Chiari L, Burchiel KJ, Hogarth P, Horak FB. Effects of deep brain stimulation in the subthalamic nucleus or globus pallidus internus on step initiation in Parkinson disease: laboratory investigation. J Neurosurg. 2012;117(6):1141–9.
PubMed
PubMed Central
Google Scholar
Moro E, Lozano AM, Pollak P, et al. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Mov Disord. 2010;25(5):578–86.
PubMed
Google Scholar
St George RJ, Carlson-Kuhta P, King LA, Burchie KJ, Horak FB. Compensatory stepping in parkinson’s disease is still a problem after deep brain stimulation randomized to STN or GPi. J Neurophysiol. 2015;114(3):1417–23.
CAS
PubMed
PubMed Central
Google Scholar
Odekerken VJJ, Boel JA, Schmand BA, et al. GPi vs STN deep brain stimulation for Parkinson disease. Neurology. 2016;86(8):755–61. https://doi.org/10.1212/WNL.0000000000002401.
CAS
Article
PubMed
Google Scholar
Rughani A, Schwalb JM, Sidiropoulos C, et al. Congress of neurological surgeons systematic review and evidence-based guideline on subthalamic nucleus and globus pallidus internus deep brain stimulation for the treatment of patients with Parkinson’s disease: executive summary. Neurosurgery. 2018;82(6):753–6.
PubMed
PubMed Central
Google Scholar
Munhoz RP, Cerasa A, Okun MS. Surgical treatment of dyskinesia in Parkinson’s disease. Front Neurol. 2014;5:1–9. https://doi.org/10.3389/fneur.2014.00065/abstract.
Article
Google Scholar
Fan SY, Wang KL, Hu W, et al. Pallidal versus subthalamic nucleus deep brain stimulation for levodopa-induced dyskinesia. Ann Clin Transl Neurol. 2020;7(1):59–68.
CAS
PubMed
Google Scholar
Liu Y, Li F, Luo H, et al. Improvement of deep brain stimulation in dyskinesia in Parkinson’s disease: a meta-analysis. Front Neurol. 2019;10:151. https://doi.org/10.3389/fneur.2019.00151/full.
Sriram A, Foote KD, Oyama G, Kwak J, Zeilman PR, Okun MS. Brittle dyskinesia following STN but not GPi deep brain stimulation. Tremor Other Hyperkinet Mov (N Y). 2014;4:242.
Google Scholar
Martinez-Ramirez D, Giugni J, Vedam-Mai V, et al. The “Brittle Response” to Parkinson’s disease medications: characterization and response to deep brain stimulation. PLoS ONE. 2014;9(4):94856. https://doi.org/10.1371/journal.pone.0094856.
Article
Google Scholar
Tagliati M. Turning tables: should GPi become the preferred DBS target for Parkinson disease? Neurology. 2012;79(1):19–20.
PubMed
Google Scholar
Elkouzi A, Tsuboi T, Burns MR, Eisinger RS, Patel A, Deeb W. Dorsal GPi/GPe stimulation induced dyskinesia in a patient with Parkinson’s disease. Tremor Other Hyperkinet Mov. 2019;9:1–5.
Google Scholar
Skodda S. Effect of deep brain stimulation on speech performance in Parkinson’s disease. Parkinsons Dis. 2012; 22:850596, https://doi.org/10.1155/2012/850596.
Buhmann C, Huckhagel T, Engel K, et al. Adverse events in deep brain stimulation: a retrospective long-term analysis of neurological, psychiatric and other occurrences. PLoS ONE. 2017;12(7):1–21.
Google Scholar
Troche MS, Brandimore AE, Foote KD, Okun MS. Swallowing and deep brain stimulation in Parkinson’s disease: a systematic review. Parkinsonism Relat Disord. 2013;19(9):783–8.
PubMed
PubMed Central
Google Scholar
Troche MS, Brandimore AE, Foote KD, et al. Swallowing outcomes following unilateral STN vs GPi surgery: a retrospective analysis. Dysphagia. 2014;29(4):425–31.
PubMed
PubMed Central
Google Scholar
Volkmann J, Allert N, Voges J, Sturm V, Schnitzler A, Freund HJ. Long-term results of bilateral pallidal stimulation in Parkinson’s disease. Ann Neurol. 2004;55(6):871–5.
PubMed
Google Scholar
Lachenmayer ML, Bettschen C, Bernasconi C, et al. Stimulation of the globus pallidus internus in the treatment of Parkinson’s disease: Long-term results of a monocentric cohort. Park Relat Disord. 2019;64:118–23. https://doi.org/10.1016/j.parkreldis.2019.03.009.
CAS
Article
Google Scholar
Aviles-Olmos I, Kefalopoulou Z, Tripoliti E, et al. Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease using an MRI-guided and MRI-verified approach. J Neurol Neurosurg Psychiatry. 2014;85(12):1419–25. https://doi.org/10.1136/jnnp-2013-306907.
Article
PubMed
Google Scholar
Fasano A, Romito LM, Daniele A, et al. Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain. 2010;133(9):2664–76. https://doi.org/10.1093/brain/awq221.
Article
PubMed
Google Scholar
Castrioto A. Ten-year outcome of subthalamic stimulation in parkinson disease. Arch Neurol. 2011;68(12):1550. https://doi.org/10.1001/archneurol.2011.182.
Article
PubMed
Google Scholar
Limousin P, Foltynie T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol. 2019;15(4):234–42. https://doi.org/10.1038/s41582-019-0145-9.
Article
PubMed
Google Scholar
Mei S, Eisinger RS, Hu W, et al. Three-Year Gait And Axial Outcomes Of Bilateral STN and GPi Parkinson’s disease deep brain stimulation. Front Hum Neurosci. 2020;14:1.
PubMed
PubMed Central
Google Scholar
Volkmann J, Moro E, Pahwa R. Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord. 2006;21(Suppl. 14):284–9.
Google Scholar
Picillo M, Lozano AM, Kou N, Puppi Munhoz R, Fasano A. Programming deep brain stimulation for Parkinson’s disease: the Toronto Western Hospital algorithms. Brain Stimul. 2016;9(3):425–37. https://doi.org/10.1016/j.brs.2016.02.004.
Article
PubMed
Google Scholar
Koeglsperger T, Palleis C, Hell F, Mehrkens JH, Bötzel K. Deep brain stimulation programming for movement disorders: current concepts and evidence-based strategies. Front Neurol. 2019;10:1–20.
Google Scholar
Little S, Pogosyan A, Neal S, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013;74(3):449–57. https://doi.org/10.1002/2Fana.23951.
Article
PubMed
PubMed Central
Google Scholar
Rosa M, Arlotti M, Ardolino G, et al. Adaptive deep brain stimulation in a freely moving parkinsonian patient. Mov Disord. 2015;30(7):1003–5. https://doi.org/10.1002/2Fmds.26241.
Article
PubMed
PubMed Central
Google Scholar
Little S, Beudel M, Zrinzo L, et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2015;87(7):717–21. https://doi.org/10.1136/2Fjnnp-2015-310972.
Article
PubMed
Google Scholar
Little S, Tripoliti E, Beudel M, et al. Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry. 2016;87(12):1388–9. https://doi.org/10.1136/2Fjnnp-2016-313518.
Article
PubMed
Google Scholar
Piña-Fuentes D, Little S, Oterdoom M, et al. Adaptive DBS in a Parkinson’s patient with chronically implanted DBS: a proof of principle. Mov Disord. 2017;32(8):1253–4. https://doi.org/10.1002/2Fmds.26959.
Article
PubMed
PubMed Central
Google Scholar
Tinkhauser G, Pogosyan A, Little S, et al. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain. 2017;140(4):1053–67. https://doi.org/10.1093/2Fbrain/2Fawx010.
Article
PubMed
PubMed Central
Google Scholar
Velisar A, Syrkin-Nikolau J, Blumenfeld Z, et al. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimul. 2019;12(4):868–76. https://doi.org/10.1016/2Fj.brs.2019.02.020.
CAS
Article
PubMed
Google Scholar
Tinkhauser G, Pogosyan A, Tan H, Herz DM, Kühn AA, Brown P. Beta burst dynamics in Parkinson’s disease OFF and ON dopaminergic medication. Brain. 2017;140(11):2968–81. https://doi.org/10.1093/brain/awx252.
Article
PubMed
Google Scholar
Schaltenbrand G, Wahren W. Atlas for stereotaxy of the human brain. Stuttgart: Thieme; 1977.
Yelnik J, Damier P, Bejjani BP, et al. Functional mapping of the human globus pallidus: contrasting effect of stimulation in the internal and external pallidum in Parkinson’s disease. Neuroscience. 2000;101(1):77–87. https://doi.org/10.1016/s0306-4522(00)00364-x.
CAS
Article
PubMed
Google Scholar