Skip to main content
Log in

Fractal Characteristics of the Seismic Swarm Succeeding the 2015 Gorkha Earthquake, Nepal

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

This study discusses the regional distribution of the b-value, box counting fractal dimension (D0) and correlation fractal dimension (D2) of the 2017–2019 seismic swarm. The location of swarm was about 30 km north of the epicenter of 2015 Gorkha earthquakes in high topography of the Manaslu-Himalchuli range. The b-values are estimated from the maximum likelihood approach, while fractal dimensions are estimated from the generalized fractal dimension approach. The b-value estimated was 1.82 ± 0.02 for the swarm sequence, while its maximum value was 2.97 ± 0.14 and minimum value was 1.81 ± 0.07 for different temporal windows. D0 values range from 0.55 ± 0.02 to 1.68 ± 0.08 for different temporal windows and correlation fractal dimension ranges from 0.27 ± 0.07 to 0.78 ± 0.02 for the same windows. Positive correlation between fractal dimensions D0 and D2 and a negative correlation between fractal dimensions and b-value were observed from the study. The seismic moment released during the 2017–2019 swarm was around \(2.0\times {10}^{17}\) Nm. The large b-value (1.82) obtained for the whole sequence signifies the typical characteristic of swarm earthquakes. The variation in b and fractal dimensions can be related to the highly heterogeneous environment caused by the thermal cracking of the weak zone. Furthermore, reduced value of effective stress might have caused the failure of isolated and small asperities and consequently the earthquakes occurred in clusters. The occurrence of swarms may be associated with the formation of new fractures in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amezawa Y, Maeda T, Kosuga M (2021) Migration diffusivity as a controlling factor in the duration of earthquake swarms. Earth, Planets Sp 73:148

    Article  Google Scholar 

  2. Kundu B, Legrand D, Gahalaut K et al (2012) The 2005 volcano-tectonic earthquake swarm in the Andaman Sea: triggered by the 2004 great Sumatra-Andaman earthquake. Tectonics 31:1–11. https://doi.org/10.1029/2012TC003138

    Article  Google Scholar 

  3. Hainzl S (2004) Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering. Geophys J Int 159:1090–1096. https://doi.org/10.1111/j.1365-246X.2004.02463.x

    Article  Google Scholar 

  4. Passarelli L, Rivalta E, Jónsson S et al (2018) Scaling and spatial complementarity of tectonic earthquake swarms. Earth Planet Sci Lett 482:62–70. https://doi.org/10.1016/j.epsl.2017.10.052

    Article  Google Scholar 

  5. Godano M, Larroque C, Bertrand E et al (2013) The October-November 2010 earthquake swarm near Sampeyre (Piedmont region, Italy): a complex multicluster sequence. Tectonophysics 608:97–111. https://doi.org/10.1016/j.tecto.2013.10.010

    Article  Google Scholar 

  6. Hauksson E, Stock J, Bilham R et al (2013) Report on the august 2012 brawley earthquake swarm in Imperial Valley, Southern California. Seismol Res Lett 84:177–189. https://doi.org/10.1785/0220120169

    Article  Google Scholar 

  7. Brodsky EE, Mori JJ, Anderson L et al (2020) The state of stress on the fault before, during, and after a major earthquake. Annu Rev Earth Planet Sci 48:49–74. https://doi.org/10.1146/annurev-earth-053018-060507

    Article  Google Scholar 

  8. Hoste-Colomer R, Bollinger L, Lyon-Caen H et al (2017) Lateral structure variations and transient swarm revealed by seismicity along the Main Himalayan Thrust north of Kathmandu. Tectonophysics 714–715:107–116. https://doi.org/10.1016/j.tecto.2016.10.004

    Article  Google Scholar 

  9. Bilham R (2004) Earthquakes in India and the Himalaya: tectonics, geodesy and history. Ann Geophys 47:839–858

    Google Scholar 

  10. Mullick M, Mukhopadhyay D (2017) Quantitative analysis of the Nepal earthquake on 25 April, 2015 in the perspective of future earthquake hazard. Geod Geodyn 8:77–83. https://doi.org/10.1016/j.geog.2017.02.003

    Article  Google Scholar 

  11. Seeber L, Armbruster JG (1981) Great detachment earthquakes along the Himalayan arc and long- term forecasting. Earthq Predict an Int Rev. https://doi.org/10.1029/me004p0259

    Article  Google Scholar 

  12. Avouac JP, Meng L, Wei S et al (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat Geosci 8:708–711. https://doi.org/10.1038/ngeo2518

    Article  Google Scholar 

  13. Elliott JR, Jolivet R, Gonzalez PJ et al (2016) Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat Geosci 9:174–180. https://doi.org/10.1038/ngeo2623

    Article  Google Scholar 

  14. Grandin R, Vallée M, Satriano C et al (2015) Rupture process of the Mw = 7.9 2015 Gorkha earthquake (Nepal): insights into Himalayan megathrust segmentation. Geophys Res Lett 42:8373–8382. https://doi.org/10.1002/2015GL066044

    Article  Google Scholar 

  15. Gualandi A, Avouac JP, Galetzka J et al (2017) Pre- and post-seismic deformation related to the 2015, Mw7.8 Gorkha earthquake. Nepal Tectonophysics 714–715:90–106. https://doi.org/10.1016/j.tecto.2016.06.014

    Article  Google Scholar 

  16. Wang K, Fialko Y (2015) Slip model of the 2015 Mw 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. Geophys Res Lett 42:7452–7458. https://doi.org/10.1002/2015GL065201

    Article  Google Scholar 

  17. Zhang J, Zhao B, Wang D et al (2021) Dynamic modeling of postseismic deformation following the 2015 Mw 7.8 Gorkha earthquake, Nepal. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2021.104781

    Article  Google Scholar 

  18. Adhikari LB, Bollinger L, Vergne J et al (2021) Orogenic Collapse and Stress Adjustments Revealed by an Intense Seismic Swarm Following the 2015 Gorkha Earthquake in Nepal. Front Earth Sci 9:1–13. https://doi.org/10.3389/feart.2021.659937

    Article  Google Scholar 

  19. Bollinger L, Tapponnier P, Sapkota SN, Klinger Y (2016) Slip deficit in central Nepal: Omen for a repeat of the 1344 AD earthquake? the 2015 Gorkha, Nepal, Earthquake and Himalayan Studies 4 Seismology. Earth Planets Sp. https://doi.org/10.1186/s40623-016-0389-1

    Article  Google Scholar 

  20. Ito Y, Hino R, Kido M et al (2013) Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics 600:14–26. https://doi.org/10.1016/j.tecto.2012.08.022

    Article  Google Scholar 

  21. Kato A, Nakagawa S (2014) Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophys Res Lett 41:5420–5427. https://doi.org/10.1002/2014GL061138

    Article  Google Scholar 

  22. Ruiz S, Metois M, Fuenzalida A et al (2014) Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw8.1 earthquake. Science 80:1165–1169. https://doi.org/10.1126/science.1256074

    Article  Google Scholar 

  23. Mandal P, Srinagesh D, Suresh G et al (2021) Characterization of earthquake hazard at the Palghar and Pulichintala swarm activity regions (India) through three-dimensional modelling of b-value and fractal (correlation) dimensions. Nat Hazards 108:1183–1196. https://doi.org/10.1007/s11069-021-04726-5

    Article  Google Scholar 

  24. Sateesh A, Mahesh P, Singh AP et al (2019) Are earthquake swarms in South Gujarat, northwestern Deccan Volcanic Province of India monsoon induced? Environ Earth Sci 78:1–13. https://doi.org/10.1007/s12665-019-8382-1

    Article  Google Scholar 

  25. Paudyal H, Singh HN, Shanker D, Singh VP (2008) Stress pattern in two seismogenic sources in Nepal-Himalaya and its vicinity. Acta Geophys 56:313–323. https://doi.org/10.2478/s11600-008-00013-2

    Article  Google Scholar 

  26. Ruch J, Keir D, Passarelli L et al (2021) Revealing 60 years of Earthquake swarms in the Southern Red Sea, Afar and the Gulf of Aden. Front Earth Sci 9:9. https://doi.org/10.3389/feart.2021.664673

    Article  Google Scholar 

  27. Sykes LR (1970) Earthquake swarms and sea- floor spreading. J Geophys Res 75:6578–6611. https://doi.org/10.1029/jb075i032p06598

    Article  Google Scholar 

  28. An W, Hu X, Garzanti E et al (2021) New precise dating of the India-Asia collision in the Tibetan Himalaya at 61 Ma. Geophys Res Lett 48:1–10. https://doi.org/10.1029/2020GL090641

    Article  Google Scholar 

  29. Decelles PG, Kapp P, Gehrels GE, Ding L (2014) Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics 33:824–849. https://doi.org/10.1002/2014TC003522

    Article  Google Scholar 

  30. Bai L, Liu H, Ritsema J et al (2016) Faulting structure above the Main Himalayan Thrust as shown by relocated aftershocks of the 2015 Mw7.8 Gorkha, Nepal, earthquake. Geophys Res Lett 43:637–642. https://doi.org/10.1002/2015GL066473

    Article  Google Scholar 

  31. Gansser A (1964) The Geology of the Himalaya. Wiley Interscience, New York

    Google Scholar 

  32. Martin AJ (2017) A review of definitions of the Himalayan Main Central Thrust. Int J Earth Sci 106:2131–2145. https://doi.org/10.1007/s00531-016-1419-8

    Article  Google Scholar 

  33. Adhikari LB, Gautam UP, Koirala BP et al (2015) The aftershock sequence of the 2015 april 25 Gorkha-Nepal earthquake. Geophys J Int 203:2119–2124. https://doi.org/10.1093/gji/ggv412

    Article  Google Scholar 

  34. Yamada M, Kandel T, Tamaribuchi K, Ghosh A (2020) 3D fault structure inferred from a refined aftershock catalog for the 2015 gorkha earthquake in Nepal. Bull Seismol Soc Am 110:26–37. https://doi.org/10.1785/0120190075

    Article  Google Scholar 

  35. Bilham R (2015) Raising Kathmandu Nat Geosci 8:582–584. https://doi.org/10.1038/ngeo2498

    Article  Google Scholar 

  36. Jouanne F, Gajurel A, Mugnier JL et al (2019) Postseismic deformation following the April 25, 2015 Gorkha earthquake (Nepal): afterslip versus viscous relaxation. J Asian Earth Sci 176:105–119. https://doi.org/10.1016/j.jseaes.2019.02.009

    Article  Google Scholar 

  37. Liu G, Yang SM, Shi HB et al (2017) A unified source model of the 2015 Gorkha earthquake. Acta Geophys Sin 60:2663–2679. https://doi.org/10.6038/cjg20170714

    Article  Google Scholar 

  38. Wiemer, (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72:373–382. https://doi.org/10.1785/gssrl.72.3.373

    Article  Google Scholar 

  39. De RV, Dimitriu P, Papadimitriou E, Tosi P (1993) Recurrent patterns in the spatial behaviour of italian seismicity revealed by the fractal approach. Geophys Res Lett 20:1911–1914

    Article  Google Scholar 

  40. Aki K (1967) Scaling law of seismic spectrum. J Geophys Res 72:1217–1231. https://doi.org/10.1029/jz072i004p01217

    Article  Google Scholar 

  41. Hirata T (1989) A correlation between the b value and the fractal dimension of earthquakes. J Geophys Res 94:7507–7514. https://doi.org/10.1029/JB094iB06p07507

    Article  Google Scholar 

  42. Main IG (1992) Damage mechanics with long-range interactions: correlation between the seismic b-value and the fractal two-point correlation dimension. Geophys J Int 111:531–541. https://doi.org/10.1111/j.1365-246X.1992.tb02110.x

    Article  Google Scholar 

  43. Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156:636–638. https://doi.org/10.1126/science.156.3775.636

    Article  Google Scholar 

  44. Aviles CA, Scholz CH, Boatwright J (1987) Fractal analysis applied to characteristic segments of the San Andreas fault ( USA). J Geophys Res 92:331–344. https://doi.org/10.1029/JB092iB01p00331

    Article  Google Scholar 

  45. Öncel AO, Main I, Alptekin Ö, Cowie P (1996) Spatial variations of the fractal properties of seismicity in the Anatolian fault zones. Tectonophysics 257:189–202. https://doi.org/10.1016/0040-1951(95)00132-8

    Article  Google Scholar 

  46. Utsu T (1969) Aftershocks and earthquake statistics(1): some parameters which characterize an aftershock sequence and their interrelations. J Fac Sci Hokkaido Univ 3:129–195

    Google Scholar 

  47. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Phys D Nonlinear Phenom 9:189–208. https://doi.org/10.1016/0167-2789(83)90298-1

    Article  MathSciNet  MATH  Google Scholar 

  48. Aki K (1965) Maximum likelihood estimate of b in the formula Log N = a - bM and its confidence limits. Bull Earthq Res Inst Tokyo Univ 43:237–239

    Google Scholar 

  49. Bender B (1983) Maximum likelihood estimation of b values for magnitude grouped data. Bull Seismol Soc Am 73:831–851. https://doi.org/10.1785/bssa0730030831

    Article  Google Scholar 

  50. Utsu T (1969) Instructions for use aftershocks and earthquake statistics (I). J Fac Sci Hokkaido Univ 3:129–195

    Google Scholar 

  51. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Article  Google Scholar 

  52. Wiemer S, Katsumata K (1999) Spatial variability of seismicity parameters in aftershock zones. J Geophys Res Solid Earth 104:13135–13151. https://doi.org/10.1029/1999jb900032

    Article  Google Scholar 

  53. Murru M, Console R, Falcone G et al (2007) Spatial mapping of the b value at Mount Etna, Italy, using earthquake data recorded from 1999 to 2005. J Geophys Res Solid Earth. https://doi.org/10.1029/2006JB004791

    Article  Google Scholar 

  54. Marzocchi W, Sandri L (2003) A review and new insights on the estimation of the b-value and its uncertainty. Ann Geophys 46:1271–1282. https://doi.org/10.4401/ag-3472

    Article  Google Scholar 

  55. Wiemer S, Wyss M (1997) Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times? J Geophys Res Solid Earth 102:15115–15128. https://doi.org/10.1029/97jb00726

    Article  Google Scholar 

  56. Enescu B, Enescu D, Ito K (2011) Values of b and p: their variations and relation to physical processes for earthquakes in Japan and Romania. Rom Reports Phys 56:590–608

    Google Scholar 

  57. Cheng QM, Sun HY (2018) Variation of singularity of earthquake-size distribution with respect to tectonic regime. Geosci Front 9:453–458. https://doi.org/10.1016/j.gsf.2017.04.006

    Article  Google Scholar 

  58. Sreejith KM, Sunil PS, Agrawal R et al (2018) Audit of stored strain energy and extent of future earthquake rupture in central Himalaya. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-35025-y

    Article  Google Scholar 

  59. Wang F, Zai Y (2021) Fractal and multifractal characteristics of shale nanopores. Results Phys. https://doi.org/10.1016/j.rinp.2021.104277

    Article  Google Scholar 

  60. Legrand D, Villagómez D, Yepes H, Calahorrano A (2004) Multifractal dimension and b value analysis of the 1998–1999 Quito swarm related to Guagua Pichincha volcano activity, Ecuador. J Geophys Res Solid Earth 109:1–9. https://doi.org/10.1029/2003jb002572

    Article  Google Scholar 

  61. Rodríguez-Pérez Q, Monterrubio-Velasco M, Zúñiga FR et al (2021) Spatial and temporal b-value characterization at Popocatépetl volcano, Central Mexico. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2021.107320

    Article  Google Scholar 

  62. Rydelek PA, Sacks IS (2003) Comment on “Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan”, by Stefan Wiemer and Max Wyss. Bull Seismol Soc Am 93:1862–1867. https://doi.org/10.1785/0120020035

    Article  Google Scholar 

  63. Senatorski P (2020) Gutenberg–Richter’s b value and earthquake asperity models. Pure Appl Geophys 177:1891–1905. https://doi.org/10.1007/s00024-019-02385-z

    Article  Google Scholar 

  64. Spada M, Tormann T, Wiemer S, Enescu B (2013) Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophys Res Lett 40:709–714. https://doi.org/10.1029/2012GL054198

    Article  Google Scholar 

  65. Bachmann CE, Wiemer S, Goertz-Allmann BP, Woessner J (2012) Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophys Res Lett 39:1–7. https://doi.org/10.1029/2012GL051480

    Article  Google Scholar 

  66. López-Comino JA, Cesca S, Heimann S et al (2017) Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden). Rock Mech Rock Eng 50:2985–3001. https://doi.org/10.1007/s00603-017-1285-0

    Article  Google Scholar 

  67. Fiedler B, Hainzl S, Zöller G, Holschneider M (2018) Detection of gutenberg-richter b-value changes in earthquake time series. Bull Seismol Soc Am 108:2778–2787. https://doi.org/10.1785/0120180091

    Article  Google Scholar 

  68. Mogi K (1963) Some discussions on aftershocks, foreshocks and earthquake swarms—the fracture of a semi- infinite body caused by an inner stress origin and its relation to the earthquake phenomena (third paper). Bull Earthq Res Inst 41:615–658

    Google Scholar 

  69. Mogi K (1967) Earthquakes and fractures. Tectonophysics 5:35–55. https://doi.org/10.1016/0040-1951(67)90043-1

    Article  Google Scholar 

  70. Amelung F, King G (1997) Earthquake scaling laws for creeping and non-creeping faults. Geophys Res Lett 24:507–510. https://doi.org/10.1029/97GL00287

    Article  Google Scholar 

  71. Chen KH, Bürgmann R (2017) Creeping faults: good news, bad news? Rev Geophys 55:282–286. https://doi.org/10.1002/2017RG000565

    Article  Google Scholar 

  72. Harris RA (2017) Large earthquakes and creeping faults. Rev Geophys 55:169–198

    Article  Google Scholar 

  73. Wyss M (2001) Locked and creeping patches along the Hayward fault, California. Geophys Res Lett 28:3537–3540. https://doi.org/10.1029/2001GL013499

    Article  Google Scholar 

  74. Schorlemmer D, Wiemer S, Wyss M (2004) Earthquake statistics at Parkfield: 1. Stationarity of b values. J Geophys Res Solid Earth 109:1–17. https://doi.org/10.1029/2004JB003234

    Article  Google Scholar 

  75. Shi Y, Bolt AB (1982) The standard error of the magnitude-frequency b value. Bull Seismol Soc Am 72:1677–1687

    Article  Google Scholar 

  76. Nanjo K, Nagahama H (2004) Fractal properties of spatial distributions of aftershocks and active faults. Chaos, Solitons Fractals 19:387–397. https://doi.org/10.1016/S0960-0779(03)00051-1

    Article  MATH  Google Scholar 

  77. Mandal P, Mabawonku AO, Dimri VP (2005) Self-organized fractal seismicity of reservoir triggered earthquakes in the Koyna-Warna seismic zone, Western India. Pure Appl Geophys 162:73–90. https://doi.org/10.1007/s00024-004-2580-8

    Article  Google Scholar 

  78. Setyawan B, Sapiie B (2019) Correlation between the fractal of aftershock spatial distribution and active fault on Sumatra. Nat Hazards Earth Syst Sci. https://doi.org/10.5194/nhess-2019-215

  79. Tiwari RK, Paudyal H (2021) Box counting fractal dimension and frequency size distribution of earthquakes in the central Himalaya region. J Inst Sci Technol 26:127–136. https://doi.org/10.3126/jist.v26i2.41664

    Article  Google Scholar 

  80. Xu J (2011) Fractal analysis to study the structural distribution of Wenchuan earthquake in China. Adv Mater Res 243–249:4097–4100. https://doi.org/10.4028/www.scientific.net/AMR.243-249.4097

    Article  Google Scholar 

  81. Hirata T, Satoh T, Ito K (1987) Fractal structure of spatial distribution of microfracturing in rock. Geophys J R Astron Soc 90:369–374. https://doi.org/10.1111/j.1365-246X.1987.tb00732.x

    Article  Google Scholar 

  82. Pandey MR, Tandukar RP, Avouac JP et al (1995) Interseismic strain accumulation on the Himalayan crustal ramp (Nepal). Geophys Res Lett 22:751–754. https://doi.org/10.1029/94GL02971

    Article  Google Scholar 

  83. Gulia L, Wiemer S (2010) The influence of tectonic regimes on the earthquake size distribution: a case study for Italy. Geophys Res Lett 37:1–6. https://doi.org/10.1029/2010GL043066

    Article  Google Scholar 

  84. Mori J, Abercrombie RE (1997) Depth dependence of earthquake frequency-magnitude distributions in California: Implications for rupture initiation. J Geophys Res Solid Earth 102:15081–15090. https://doi.org/10.1029/97jb01356

    Article  Google Scholar 

  85. Nuannin P, Kulhánek O, Persson L (2012) Spatial and temporal characteristics of aftershocks of the December 26, 2004 and March 28, 2005 earthquakes off NW Sumatra. J Asian Earth Sci 46:150–160. https://doi.org/10.1016/j.jseaes.2011.12.004

    Article  Google Scholar 

  86. Farrell J, Husen S, Smith RB (2009) Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system. J Volcanol Geotherm Res 188:260–276. https://doi.org/10.1016/j.jvolgeores.2009.08.008

    Article  Google Scholar 

  87. Abu El-Nader IF, Shater A, Hussein HM (2016) Mapping b -values beneath Abu Dabbab from June to August 2004 earthquake swarm. NRIAG J Astron Geophys 5:403–412. https://doi.org/10.1016/j.nrjag.2016.07.002

    Article  Google Scholar 

  88. Scholz CH (2002) The Mechanics of Earthquakes and Faulting. Cambridge University Press

    Book  Google Scholar 

  89. Öncel AO, Main I, Alptekin Ö, Cowie P (1996) Temporal variations in the fractal properties of seismicity in the north anatolian fault zone between 31°E and 41°E. Pure Appl Geophys 147:147–159. https://doi.org/10.1007/bf00876441

    Article  Google Scholar 

  90. Okubo PG, Aki K (1987) Fractal geometry in the San Andreas fault system ( USA). J Geophys Res 92:345–355. https://doi.org/10.1029/JB092iB01p00345

    Article  Google Scholar 

  91. Ram A, Roy PNS (2005) Fractal dimensions of blocks using a box-counting technique for the 2001 Bhuj earthquake, Gujarat, India. Pure Appl Geophys 162:531–548. https://doi.org/10.1007/s00024-004-2620-4

    Article  Google Scholar 

  92. Chen CC, Wang WC, Chang YF et al (2006) A correlation between the b-value and the fractal dimension from the aftershock sequence of the 1999 Chi-Chi, Taiwan, earthquake. Geophys J Int 167:1215–1219. https://doi.org/10.1111/j.1365-246X.2006.03230.x

    Article  Google Scholar 

  93. Mandal P, Rodkin MV (2011) Seismic imaging of the 2001 Bhuj Mw7.7 earthquake source zone: B-value, fractal dimension and seismic velocity tomography studies. Tectonophysics 512:1–11. https://doi.org/10.1016/j.tecto.2011.09.004

    Article  Google Scholar 

  94. Goebel THW, Sammis CG, Becker TW et al (2015) A comparison of seismicity characteristics and fault structure between stick-slip experiments and nature. Pure Appl Geophys 172:2247–2264. https://doi.org/10.1007/s00024-013-0713-7

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (RKT) would like to express acknowledgements to Tribhuvan University of Nepal for providing the sabbatical leave and to the University Grants Commission, Nepal, for providing the financial support under the PhD grant S&T -14- 075/76. The authors would also like to thank the reviewers for their suggestions and comments to improve the quality of this manuscript.

Funding

There is an agreement between author and publisher that the method of publishing is traditional and author do not have to pay any APC (Article publishing charge).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Krishna Tiwari.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests that could have appeared to influence the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, R.K., Paudyal, H. Fractal Characteristics of the Seismic Swarm Succeeding the 2015 Gorkha Earthquake, Nepal. Indian Geotech J 53, 789–804 (2023). https://doi.org/10.1007/s40098-022-00704-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-022-00704-1

Keywords

Navigation