Skip to main content
Log in

Stability Analysis of a Landslide: A View with Implications of Microstructural Soil Characters

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

The 2015 Devrek landslide is one of the largest and most puzzling features on the Devrek-Eregli Highway in Zonguldak Province, in the north-west of Turkey. The landslide which was activated in March, was about 700 m long, 110 m wide with a volume of 1,100,000 m3. In order to assess the landslide hazard in a systematic way, we have employed several techniques such as geotechnical, microstructural and finite elements (FE) modelling. X-ray diffraction and X-ray fluorescence studies show low clay content in the crown section and the amounts of illite and sepiolite do not exceed 25% where there is detrital sand indicating that there is continuous sliding activity. The main sliding body demonstrates implications of liquefaction according to the amount of fine sand and clay obtained by laboratory measurements. The most active clay group prevailing the landslide formation are illite and sepiolite. Furthermore, rounded fine quarts have increased sliding and rolling activity risk according to their physical structures combined with high-seasonal rainfall rate. The FE method was used for both static and dynamic slope stability investigations. Since the landslide region are in a very active tectonic region, earthquake-triggered landsliding strongly correlates with measured peak ground acceleration. Therefore, we have tested the model in numerical dynamic analysis, and the results show a deterioration in landslide stability during seismic loading which puts the study area at risk. All analysis carried out for the landslide assessment shows a continued landslide hazard for the residential areas close to the landslide foot zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Modified after Turer et al. [35] (color figure online)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bradbury KK, Evans JP, Chester JS, Chester FM, Kirschner DL (2011) Lithology and internal structure of the San Andreas fault at depth based on characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at Depth (SAFOD) borehole. Earth Planet Sci Lett 310(1–2):131–144. https://doi.org/10.1016/j.epsl.2011.07.020

    Article  Google Scholar 

  2. Cruden DM (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol 43(1):27–29. https://doi.org/10.1007/BF02590167

    Article  Google Scholar 

  3. Bommer JJ, Rodríguez CE (2002) Earthquake-induced landslides in Central America. Eng Geol 63(3–4):189–220. https://doi.org/10.1016/S0013-7952(01)00081-3

    Article  Google Scholar 

  4. UNDRR (2019) Global assessment report on disaster risk reduction 2019. United Nations Office for Disaster Risk Reduction. http://undrr.org. Accessed 5 Feb 2020

  5. Yong C, Booth D (2011) The Wenchuan Earthquake of 2008. Springer, Heidelberg

    Google Scholar 

  6. Yin Y, Wang F, Sun P (2009) Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 6(2):139–152. https://doi.org/10.1007/s10346-009-0148-5

    Article  Google Scholar 

  7. Skempton AW (1985) Residual strength of clays in landslides, folded strata and the laboratory. Géotechnique 35(1):3–18. https://doi.org/10.1680/geot.1985.35.1.3

    Article  Google Scholar 

  8. Worasith N, Goodman BA, Neampan J, Jeyachoke N, Thiravetyan P (2011) Characterization of modified kaolin from the Ranong deposit Thailand by XRD, XRF, SEM, FTIR and EPR techniques. Clay Miner 46(4):539–559. https://doi.org/10.1180/claymin.2011.046.4.539

    Article  Google Scholar 

  9. Wen B, Aydin A (2003) Microstructural study of a natural slip zone: quantification and deformation history. Eng Geol 68(3–4):289–317. https://doi.org/10.1016/S0013-7952(02)00234-X

    Article  Google Scholar 

  10. Chen J, Dai F, Xu L, Chen S, Wang P, Long W, Shen N (2014) Properties and microstructure of a natural slip zone in loose deposits of red beds, southwestern China. Eng Geol 183:53–64. https://doi.org/10.1116/j.enggeo.2014.10.004

    Article  Google Scholar 

  11. Jia X, Liang S, Fan C (2014) Landslide science for a safer geoenvironment. Springer, Berlin. https://doi.org/10.1007/978-3-319-05050-8

    Book  Google Scholar 

  12. Jiang S, Wen B, Zhao C (2014) Landslide science for a safer geoenvironment. Springer, Berlin. https://doi.org/10.1007/978-3-319-05050-8

    Book  Google Scholar 

  13. Regmi AD, Yoshida K, Dhital MR, Devkota K (2013) Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal. Landslides 10(1):1–13. https://doi.org/10.1007/s10346-011-0311-7

    Article  Google Scholar 

  14. Kuo LW, Li H, Smith SAF, Di Toro G, Suppe J, Song S-R, Nielsen S, Sheu H-S, Si J (2014) Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake. Geology 42(1):47–50. https://doi.org/10.1130/G34862.1

    Article  Google Scholar 

  15. Belytschko T (2008) The finite element method: linear static and dynamic finite element analysis: Thomas J. R. Hughes. Comput-Aided Civ Infrastruct Eng 4(3):245–246. https://doi.org/10.1111/j.1467-8667.1989.tb00025.x

    Article  Google Scholar 

  16. Griffiths DV, Lane PA (1999) Slope stability analysis by finite elements. Géotechnique 49(3):387–403. https://doi.org/10.1680/geot.1999.49.3.387

    Article  Google Scholar 

  17. Leshchinsky B, Vahedifard F, Koo HB, Kim SH (2015) Yumokjeong Landslide: an investigation of progressive failure of a hillslope using the finite element method. Landslides 12(5):997–1005. https://doi.org/10.1007/s10346-015-0610-5

    Article  Google Scholar 

  18. Savage W, Morrissey M, Baum, R (2000) Geotechnical properties for landslide-prone Seattle-area glacial deposits. U.S. Geological Survey Open-File Report 00-228

  19. Potts D, Zdravkovic L (2001) Finite element analysis in geotechnical engineering. Thomas Telford, London

    Google Scholar 

  20. Ardizzone F, Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Impact of mapping errors on the reliability of landslide hazard maps. Nat Hazards Earth Syst Sci 2(1/2):3–14. https://doi.org/10.5194/nhess-2-3-2002

    Article  Google Scholar 

  21. Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94(3–4):268–289. https://doi.org/10.1016/j.geomorph.2006.09.023

    Article  Google Scholar 

  22. Duman TY, Çan T, Emre Ö, Keçer M, Doğan A, Ateş Ş, Durmaz S (2005) Landslide inventory of northwestern Anatolia, Turkey. Eng Geol 77(1–2):99–114. https://doi.org/10.1016/j.enggeo.2004.08.005

    Article  Google Scholar 

  23. Fisher D, Hagon K, Swithern S, Walmsley L (2018) World Disasters Report 2018. International Federation of Red Cross and Red Crescent Societies

  24. Sahin C, Sipahioglu S (2003) Natural disasters and Turkey. Gunduz Egitim ve Yay, Ankara

    Google Scholar 

  25. Arca D (2011) Disaster risk analysis of Zonguldak city centre using GIS. In: Proceedings 3rd International GIS Conference, Antalya, vol 1, pp 70–77

  26. Armijo R, Meyer B, Hubert A, Barka A (1999) Westward propagation of the North Anatolian fault into the northern Aegean: timing and kinematics. Geology 27(3):267. https://doi.org/10.1130/0091-7613(1999)027%3c0267:WPOTNA%3e2.3.CO;2

    Article  Google Scholar 

  27. Le Pichon X, Şengör AMC, Kende J, İmren C, Henry P, Grall C, Karabulut H (2016) Propagation of a strike-slip plate boundary within an extensional environment: the westward propagation of the North Anatolian Fault. Can J Earth Sci 53(11):1416–1439. https://doi.org/10.1139/cjes-2015-0129

    Article  Google Scholar 

  28. Reilinger RE, McClusky SC, Oral MB, King RW, Toksoz MN, Barka AA, Kinik I, Lenk O, Sanli I (1997) Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. J Geophys Res Solid Earth 102(B5):9983–9999. https://doi.org/10.1029/96JB03736

    Article  Google Scholar 

  29. Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res Solid Earth. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  30. Ulusay R, Tuncay E, Sonmez H, Gokceoglu C (2004) An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Eng Geol 74(3–4):265–291. https://doi.org/10.1016/j.enggeo.2004.04.002

    Article  Google Scholar 

  31. Kiziroglu S, Sirin A, Durukan A, Sengul, A, Zeyrek H (2016) Devrek Heyelanının Oluşum Mekanizması ve Heyelanın Yüzey Kırıklarının Etkileri. Republic of Turkey Ministry of Agriculture and Forestry

  32. Okay AI, Nikishin AM (2015) Tectonic evolution of the southern margin of Laurasia in the Black Sea region. Int Geol Rev 57(5–8):1051–1076. https://doi.org/10.1080/00206814.2015.1010609

    Article  Google Scholar 

  33. Okay AI, Altiner D, Sunal G, Aygül M, Akdoğan R, Altiner S, Simmons M (2018) Geological evolution of the Central Pontides. Geol Soc Lond Spec Publ 464(1):33–67. https://doi.org/10.1144/SP464.3

    Article  Google Scholar 

  34. Okay AI, Tuysuz O, Satir M, Ozkan-Altiner S, Altiner D, Sherlock S, Eren RH (2006) Cretaceous and Triassic subduction-accretion, high-pressure-low-temperature metamorphism, and continental growth in the Central Pontides, Turkey. Geol Soc Am Bull 118(9–10):1247–1269. https://doi.org/10.1130/B25938.1

    Article  Google Scholar 

  35. Turer D, Nefeslioglu HA, Zorlu K, Gokceoglu C (2008) Assessment of geo-environmental problems of the Zonguldak province (NW Turkey). Environ Geol 55(5):1001–1014. https://doi.org/10.1007/s00254-007-1049-3

    Article  Google Scholar 

  36. D’Amato Avanzi G, Galanti Y, Giannecchini R, Lo Presti D, Puccinelli A (2013) Estimation of soil properties of shallow landslide source areas by dynamic penetration tests: first outcomes from Northern Tuscany (Italy). Bull Eng Geol Env 72(3–4):609–624. https://doi.org/10.1007/s10064-013-0535-y

    Article  Google Scholar 

  37. Tofani V, Bicocchi G, Rossi G, Segoni S, D’Ambrosio M, Casagli N, Catani F (2017) Soil characterization for shallow landslides modeling: a case study in the Northern Apennines (Central Italy). Landslides 14(2):755–770

    Article  Google Scholar 

  38. GDM (2020) Zonguldak Province rainfall statistics. General Directorate of Meteorology. http://mgm.gov.tr. Accessed 10 Feb 2020

  39. Zienkiewicz O (1977) The finite element method, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  40. Brikgreve R, Broere W, Waterman D (2007) PLAXIS 2D dynamic module manual. Delft University of Technology

  41. PEER (2020) Pacific Earthquake Engineering Research Centre Database of Berkeley University. http://peer.berkeley.edu. Accessed 1 Jan 2020

  42. Duncan JM (2000) Factors of safety and reliability in geotechnical engineering. J Geotech Geoenviron Eng 126(4):307–316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307)

    Article  Google Scholar 

  43. Hack R, Alkema D, Kruse GAM, Leenders N, Luzi L (2007) Influence of earthquakes on the stability of slopes. Eng Geol 91(1):4–15. https://doi.org/10.1016/j.enggeo.2006.12.016

    Article  Google Scholar 

  44. Cheng Y, Lau C (2014) Finite-element methods for slope stability analysis and comparisons with limit equilibrium analysis. In: Slope stability analysis and stabilization, pp 209–253. https://doi.org/10.1201/b17015-5

  45. Haner B (1993) Investigation of Zonguldak-Armutcuk environment materials for hydraulic filling application. Dissertation. Istanbul Technical University

  46. Caliskan F (2016) Ceramic raw materials. Dissertation. University of Sakarya

  47. Chichagov AV, Varlamov DA, Dilanyan RA, Dokina TN, Drozhzhina NA, Samokhvalova OL, Ushakovskaya TV (2001) MINCRYST: a crystallographic database for minerals, local and network (WWW) versions. Crystallogr Rep 46(5):876–879. https://doi.org/10.1134/1.1405882

    Article  Google Scholar 

  48. Nagata H (1974) On dehydration of bound water of sepiolite. Clays Clay Miner 22(3):285–293. https://doi.org/10.1346/CCMN.1974.0220310

    Article  Google Scholar 

  49. Serratosa JM (1979) Surface properties of fibrous clay minerals (palygorskite and sepiolite), pp 99–109. https://doi.org/10.1016/S0070-4571(08)70706-4

Download references

Acknowledgements

We thank to Zonguldak Bulent Ecevit University ARTMER Science and Technology Research Centre, for providing us, laboratory support for the rock physics measurements. We also thank the editor Prof. G. Madhavi Latha and two anonymous reviewers, who helped us improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Sunbul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunbul, F., Haner, B., Mungan, H. et al. Stability Analysis of a Landslide: A View with Implications of Microstructural Soil Characters. Indian Geotech J 51, 647–660 (2021). https://doi.org/10.1007/s40098-020-00467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-020-00467-7

Keywords

Navigation