Skip to main content
Log in

One-dimensional rare-earth tungstate nanostructure encapsulated reduced graphene oxide electrocatalyst-based electrochemical sensor for the detection of organophosphorus pesticide

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The use of agricultural pesticides in modern agriculture has permitted enormous and reliable production. The organophosphorus pesticide fenitrothion (FT) is widely used in agricultural regions and has been related to detrimental effects on human health. We constructed an electrochemical sensor that detects fenitrothion (FT) using one-dimensional (1D) Pr2(WO4)3 nanorods (PWO) incorporated reduced graphene oxide (RGO) electrocatalyst that was synthesized hydrothermally. The PWO nanorods are finely embedded on the RGO nanosheet, according to powder XRD, FESEM, EDS, HRTEM, XPS, and micro-Raman studies. The PWO/RGO electrochemical behavior towards FT was studied by the different electrochemical characterization approaches [CV, DPV, AMP(it)]. Our proposed PWO/RGO sensor exhibited a linear range of 0.01–313 µM and an LOD of 0.0054 µM in AMP(it). The estimation of FT in different water samples proves the usefulness of the PWO/RGO sensor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  1. Mariyappan, V., Keerthi, M., Chen, S.-M.: Highly selective electrochemical sensor based on gadolinium sulfide rod-embedded RGO for the sensing of carbofuran. J. Agric. Food Chem. 69(9), 2679–2688 (2021)

    Article  CAS  Google Scholar 

  2. Pimentel, D.: Pesticides and pest control. Dr. Rajinder Peshin Ashok K. Dhawan Eds. In Integrated Pest Management: Innovation-Development Process. Springer, pp 83–87 (2009)

  3. Matson, P.A., Parton, W.J., Power, A.G., Swift, M.J.: Agricultural intensification and ecosystem properties. Science 277(5325), 504–509 (1997)

    Article  CAS  Google Scholar 

  4. AL-Ahmadi, M.S.: Pesticides, anthropogenic activities, and the health of our environment safety. Marcelo Larramendy, Sonia Soloneski Eds.: In Pesticides-Use and Misuse and Their Impact in the Environment. IntechOpen. (2019)

  5. Mahmood, I., Imadi, S.R., Shazadi, K., Gul, A., Hakeem, K.R.: Effects of pesticides on environment. In: Isra, M., Sameen, R.I., Kanwal, S., et al. (eds.) Plant, soil and microbes, pp. 253–269. Springer, Berlin (2016)

    Chapter  Google Scholar 

  6. Vagi, M.C., Petsas, A.S.: Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by directive 2013/39/EU from environmental matrices by using advanced oxidation processes: an overview (2007–2018). J. Environ. Chem. Eng. 8(1), 102940 (2020)

    Article  CAS  Google Scholar 

  7. Long, Q., Li, H., Zhang, Y., Yao, S.: Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosens. Bioelectron. 68, 168–174 (2015)

    Article  CAS  Google Scholar 

  8. Ragnarsdottir, K.V.: Environmental fate and toxicology of organophosphate pesticides. J. Geol. Soc. 157(4), 859–876 (2000)

    Article  CAS  Google Scholar 

  9. Nakamura, H., Hirayama, I., Hiruma, T., Doi, K.: Subcutaneous injection of organophosphate (fenitrothion)—management of preventing the appearance of toxic symptoms: a case report. Clin. Case Rep. 9(7), e04424 (2021)

    Article  Google Scholar 

  10. El-Shenawy, N.S.: Effects of insecticides fenitrothion, endosulfan and abamectin on antioxidant parameters of isolated rat hepatocytes. Toxicol. In Vitro 24(4), 1148–1157 (2010)

    Article  CAS  Google Scholar 

  11. Jaffrezic-Renault, N.: New trends in biosensors for organophosphorus pesticides. Sensors 1(2), 60–74 (2001)

    Article  Google Scholar 

  12. Sarikaya, R., Selvı, M., Erkoç, F.: Investigation of acute toxicity of fenitrothion on peppered corydoras (Corydoras paleatus) (Jenyns, 1842). Chemosphere 56(7), 697–700 (2004)

    Article  CAS  Google Scholar 

  13. Watanabe, E., Kanzaki, Y., Tokumoto, H., Hoshino, R., Kubo, H., Nakazawa, H.: Enzyme-linked immunosorbent assay based on a polyclonal antibody for the detection of the insecticide fenitrothion. Evaluation of antiserum and application to the analysis of water samples. J. Agric. Food. Chem. 50(1), 53–58 (2002)

    Article  CAS  Google Scholar 

  14. Wang, L., Dong, J., Wang, Y., Cheng, Q., Yang, M., Cai, J., Liu, F.: Novel signal-amplified fenitrothion electrochemical assay, based on glassy carbon electrode modified with dispersed graphene oxide. Sci. Rep. 6(1), 1–8 (2016)

    Google Scholar 

  15. Parra-Arroyo, L., González-González, R.B., Castillo-Zacarías, C., Martínez, E.M.M., Sosa-Hernández, J.E., Bilal, M., Iqbal, H.M., Barceló, D., Parra-Saldívar, R.: Highly hazardous pesticides and related pollutants: toxicological, regulatory, and analytical aspects. Sci. Total Environ. 807, 151879 (2022)

    Article  CAS  Google Scholar 

  16. Ramirez-Priego, P., Estévez, M.-C., Díaz-Luisravelo, H.J., Manclús, J.J., Montoya, Á., Lechuga, L.M.: Real-time monitoring of fenitrothion in water samples using a silicon nanophotonic biosensor. Anal. Chim. Acta. 1152, 338276 (2021)

    Article  CAS  Google Scholar 

  17. Kanagaraj, K., Affrose, A., Sivakolunthu, S., Pitchumani, K.: Highly selective fluorescent sensing of fenitrothion using per-6-amino-β-cyclodextrin: Eu(III) complex. Biosens. Bioelectron. 35(1), 452–455 (2012)

    Article  CAS  Google Scholar 

  18. Larki, A.: A novel application of carbon dots for colorimetric determination of fenitrothion insecticide based on the microextraction method. Spectrochim Acta Part A 173, 1–5 (2017)

    Article  CAS  Google Scholar 

  19. Malhat, F., Boulangé, J., Abdelraheem, E., Abd Allah, O., Abd El-Hamid, R., Abd El-Salam, S.: Validation of QuEChERS based method for determination of fenitrothion residues in tomatoes by gas chromatography–flame photometric detector: decline pattern and risk assessment. Food Chem. 229, 814–819 (2017)

    Article  CAS  Google Scholar 

  20. Brett, C.M.: Electrochemical sensors for environmental monitoring. Strategy and examples. Pure Appl. Chem. 73(12), 1969–1977 (2001)

    Article  CAS  Google Scholar 

  21. Kokulnathan, T., Wang, T.-J., Duraisamy, N., Kumar, E.A.: Hierarchical nanoarchitecture of zirconium phosphate/graphene oxide: robust electrochemical platform for detection of fenitrothion. J. Hazard. Mater. 412, 125257 (2021)

    Article  CAS  Google Scholar 

  22. Kumaravel, A., Murugananthan, M.: Electrochemical detection of fenitrothion using nanosilver/dodecane modified glassy carbon electrode. Sens. Actuators B 331, 129467 (2021)

    Article  CAS  Google Scholar 

  23. Kilele, J.C., Chokkareddy, R., Redhi, G.G.: Ultra-sensitive electrochemical sensor for fenitrothion pesticide residues in fruit samples using IL@ CoFe2O4NPs@ MWCNTs nanocomposite. Microchem. J. 164, 106012 (2021)

    Article  CAS  Google Scholar 

  24. Vilian, A.E., Hwang, S.-K., Lee, M.J., Bagavathi, M., Huh, Y.S., Han, Y.-K.: Facile synthesis of petal-like VS2 anchored onto graphene nanosheets for the rapid sensing of toxic pesticide in polluted water. Ecotoxicol. Environ. Saf. 228, 113021 (2021)

    Article  CAS  Google Scholar 

  25. Yang, Y., Liu, Q., Zhao, Y., Chen, J., Chen, B., Yan, Y., Gao, F.: Electrochemical biosensor based on CuPt alloy NTs-AOE for the ultrasensitive detection of organophosphate pesticides. Nanotechnology 33(10), 105501 (2021)

    Article  Google Scholar 

  26. Chen, J., Gong, X., Lin, Y., Chen, Y., Luo, Z., Huang, Y.: Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors. J. Alloys Compd. 492(1–2), 667–670 (2010)

    Article  CAS  Google Scholar 

  27. Pourmortazavi, S.M., Rahimi-Nasrabadi, M., Ganjali, M.R., Karimi, M.S., Norouzi, P., Faridbod, F.: Facile and effective synthesis of praseodymium tungstate nanoparticles through an optimized procedure and investigation of photocatalytic activity. Open Chem. 15(1), 129–138 (2017)

    Article  CAS  Google Scholar 

  28. Bae, B., Tamura, S., Imanaka, N.: Novel environment-friendly yellow pigments based on praseodymium(III) tungstate. Ceram. Int. 43(9), 7366–7368 (2017)

    Article  CAS  Google Scholar 

  29. Guo, W., Lin, Y., Gong, X., Chen, Y., Luo, Z., Huang, Y.: Polarized spectral properties of Pr3+ ions in NaGd (MO4)2 crystal. Appl. Phys. B 94(1), 155–163 (2009)

    Article  CAS  Google Scholar 

  30. Sundaresan, P., Yamuna, A., Chen, S.-M.: Sonochemical synthesis of samarium tungstate nanoparticles for the electrochemical detection of nilutamide. Ultrason. Sonochem. 67, 105146 (2020)

    Article  CAS  Google Scholar 

  31. Beitollahi, H., Dourandish, Z., Tajik, S., Ganjali, M.R., Norouzi, P., Faridbod, F.: Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine. J. Rare Earths 36(7), 750–757 (2018)

    Article  CAS  Google Scholar 

  32. Sundaresan, P., Gnanaprakasam, P., Chen, S.-M., Mangalaraja, R.V., Lei, W., Hao, Q.: Simple sonochemical synthesis of lanthanum tungstate (La2(WO4)3) nanoparticles as an enhanced electrocatalyst for the selective electrochemical determination of anti-scald-inhibitor diphenylamine. Ultrason. Sonochem. 58, 104647 (2019)

    Article  CAS  Google Scholar 

  33. Sundaresan, P., Krishnapandi, A., Chen, S.-M.: Design and investigation of ytterbium tungstate nanoparticles: an efficient catalyst for the sensitive and selective electrochemical detection of antipsychotic drug chlorpromazine. J. Taiwan Inst. Chem. Eng. 96, 509–519 (2019)

    Article  CAS  Google Scholar 

  34. Yamuna, A., Sundaresan, P., Chen, S.-M., Shih, W.-L.: Ultrasound assisted synthesis of praseodymium tungstate nanoparticles for the electrochemical detection of cardioselective β-blocker drug. Microchem. J. 159, 105420 (2020)

    Article  CAS  Google Scholar 

  35. Kaczmarek, S., Tomaszewicz, E., Moszyński, D., Jasik, A., Leniec, G.: DTA/TG, IR, EPR and XPS studies of some praseodymium(III) tungstates. Mater. Chem. Phys. 124(1), 646–651 (2010)

    Article  CAS  Google Scholar 

  36. Liang, H.W., Liu, S., Yu, S.H.: Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates. Adv. Mater. 22(35), 3925–3937 (2010)

    Article  CAS  Google Scholar 

  37. Shumyantseva, V., Bulko, T., Suprun, E., Archakov, A.: Electrochemical sensor systems based on one dimensional (1D) nanostructures for analysis of bioaffinity interactions. Biomed. Khim. 59(2), 209–218 (2013)

    Article  CAS  Google Scholar 

  38. Yin, Z., Zheng, Q.: Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: an overview. Adv. Energy Mater. 2(2), 179–218 (2012)

    Article  CAS  Google Scholar 

  39. Pan, J., Shen, H., Mathur, S.: One-dimensional SnO2 nanostructures: synthesis and applications. J. Nanotechnol. 2012, 1 (2012):12

    Article  Google Scholar 

  40. Saravanakumar, K., Balakumar, V., Govindan, K., Jang, A., Lee, G., Muthuraj, V.: Polyaniline intercalated with Ag1. 2V3O8 nanorods based electrochemical sensor. J. Ind. Eng. Chem. 91, 93–101 (2020)

    Article  CAS  Google Scholar 

  41. Shu, Y., Zhang, L., Cai, H., Yang, Y., Zeng, J., Ma, D., Gao, Q.: Hierarchical Mo2C@ MoS2 nanorods as electrochemical sensors for highly sensitive detection of hydrogen peroxide and cancer cells. Sens. Actuators B 311, 127863 (2020)

    Article  CAS  Google Scholar 

  42. Dong, X., Cao, Y., Wang, J., Chan-Park, M.B., Wang, L., Huang, W., Chen, P.: Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2(10), 4364–4369 (2012)

    Article  CAS  Google Scholar 

  43. Chen, T.-W., Kalimuthu, P., Veerakumar, P., Lin, K.-C., Chen, S.-M., Ramachandran, R., Mariyappan, V., Chitra, S.: Recent developments in carbon-based nanocomposites for fuel cell applications: a review. Molecules 27(3), 761 (2022)

    Article  CAS  Google Scholar 

  44. Karuppusamy, N., Mariyappan, V., Chen, S.-M., Ramachandran, R.: A novel electrochemical sensor for the detection of enrofloxacin based on a 3D flower-like metal tungstate incorporated reduced graphene oxide nanocomposite. Nanoscale 14, 1250–1263 (2022)

    Article  CAS  Google Scholar 

  45. Sundaresan, R., Mariyappan, V., Chen, S.-M., Keerthi, M., Ramachandran, R.: Electrochemical sensor for detection of tryptophan in the milk sample based on MnWO4 nanoplates encapsulated RGO nanocomposite. Colloids Surf. A 625, 126889 (2021)

    Article  CAS  Google Scholar 

  46. Selvam, S.P., Yun, K.: A self-assembled silver chalcogenide electrochemical sensor based on rGO-Ag2Se for highly selective detection of serotonin. Sens. Actuators B 302, 127161 (2020)

    Article  Google Scholar 

  47. Yadav, S., Sharma, A.: Importance and challenges of hydrothermal technique for synthesis of transition metal oxides and composites as supercapacitor electrode materials. J. Energy Storage 44, 103295 (2021)

    Article  Google Scholar 

  48. Lee, A.Y., Yang, K., Anh, N.D., Park, C., Lee, S.M., Lee, T.G., Jeong, M.S.: Raman study of D* band in graphene oxide and its correlation with reduction. Appl. Surf. Sci. 536, 147990 (2021)

    Article  CAS  Google Scholar 

  49. Guo, M., Lu, J., Wu, Y., Wang, Y., Luo, M.: UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir 27(7), 3872–3877 (2011)

    Article  CAS  Google Scholar 

  50. Flores-Mena, J., Diaz-Reyes, J., Balderas-Lopez, J.A.: Structural properties of WO3 dependent of the annealing temperature deposited by hot-filament metal oxide deposition. Revista mexicana de física. 58(6), 504–509 (2012)

    CAS  Google Scholar 

  51. Capelli, S., Motta, D., Evangelisti, C., Dimitratos, N., Prati, L., Pirola, C., Villa, A.: Effect of carbon support, capping agent amount, and Pd NPs size for bio-adipic acid production from muconic acid and sodium muconate. Nanomaterials 10(3), 505 (2020)

    Article  CAS  Google Scholar 

  52. Johra, F.T., Jung, W.-G.: Hydrothermally reduced graphene oxide as a supercapacitor. Appl. Surf. Sci. 357, 1911–1914 (2015)

    Article  CAS  Google Scholar 

  53. Qi, P., Wang, J., Wang, X., Wang, X., Wang, Z., Xu, H., Di, S., Wang, Q., Wang, X.: Sensitive determination of fenitrothion in water samples based on an electrochemical sensor layered reduced graphene oxide, molybdenum sulfide (MoS2)-Au and zirconia films. Electrochim. Acta. 292, 667–675 (2018)

    Article  CAS  Google Scholar 

  54. Tefera, M., Admassie, S., Tessema, M., Mehretie, S.: Electrochemical sensor for determination of fenitrothion at multi-wall carbon nanotubes modified glassy carbon electrode. Anal. Bioanal. Chem. Res. 2(2), 139–150 (2015)

    CAS  Google Scholar 

  55. Ensafi, A.A., Noroozi, R., Zandi, N., Rezaei, B.: Cerium(IV) oxide decorated on reduced graphene oxide, a selective and sensitive electrochemical sensor for fenitrothion determination. Sens. Actuators B. 245, 980–987 (2017)

    Article  CAS  Google Scholar 

  56. Vinoth Kumar, J., Karthik, R., Chen, S.-M., Natarajan, K., Karuppiah, C., Yang, C.-C., Muthuraj, V.: 3D flower-like gadolinium molybdate catalyst for efficient detection and degradation of organophosphate pesticide (fenitrothion). ACS Appl. Mater. Interfaces 10(18), 15652–15664 (2018)

    Article  CAS  Google Scholar 

  57. Surucu, O., Bolat, G., Abaci, S.: Electrochemical behavior and voltammetric detection of fenitrothion based on a pencil graphite electrode modified with reduced graphene oxide (RGO)/poly (E)-1-(4-((4-(phenylamino) phenyl) diazenyl) phenyl) ethanone (DPA) composite film. Talanta 168, 113–120 (2017)

    Article  CAS  Google Scholar 

  58. Jangid, K., Sahu, R.P., Pandey, R., Chen, R., Zhitomirsky, I., Puri, I.K.: Multiwalled carbon nanotubes coated with nitrogen-sulfur co-doped activated carbon for detecting fenitrothion. ACS Appl. Nano Mater. 4(5), 4781–4789 (2021)

    Article  CAS  Google Scholar 

  59. Özcan, A., Topçuoğulları, D., Özcan, A.A.: Fenitrothion sensing with reduced graphene oxide decorated fumed silica nanocomposite modified glassy carbon electrode. Sens. Actuators B. 284, 179–185 (2019)

    Article  Google Scholar 

  60. Velusamy, V., Palanisamy, S., Chen, S.-W., Balu, S., Yang, T.C., Banks, C.E.: Novel electrochemical synthesis of cellulose microfiber entrapped reduced graphene oxide: a sensitive electrochemical assay for detection of fenitrothion organophosphorus pesticide. Talanta 192, 471–477 (2019)

    Article  CAS  Google Scholar 

  61. Rajaji, U., Chinnapaiyan, S., Chen, T.-W., Chen, S.-M., Mani, G., Mani, V., Ali, M.A., Al-Hemaid, F.M., El-Shikh, M.S.: Rational construction of novel strontium hexaferrite decorated graphitic carbon nitrides for highly sensitive detection of neurotoxic organophosphate pesticide in fruits. Electrochim. Acta 371, 137756 (2021)

    Article  CAS  Google Scholar 

  62. Canevari, T.C., Prado, T.M., Cincotto, F.H., Machado, S.A.: Immobilization of ruthenium phthalocyanine on silica-coated multi-wall partially oriented carbon nanotubes: electrochemical detection of fenitrothion pesticide. Mater. Res. Bull. 76, 41–47 (2016)

    Article  CAS  Google Scholar 

  63. Pellicer, C., Gomez-Caballero, A., Unceta, N., Goicolea, M.A., Barrio, R.J.: Using a portable device based on a screen-printed sensor modified with a molecularly imprinted polymer for the determination of the insecticide fenitrothion in forest samples. Anal. Methods 2(9), 1280–1285 (2010)

    Article  CAS  Google Scholar 

  64. Bolat, G., Abaci, S., Vural, T., Bozdogan, B., Denkbas, E.B.: Sensitive electrochemical detection of fenitrothion pesticide based on self-assembled peptide-nanotubes modified disposable pencil graphite electrode. J. Electroanal. Chem. 809, 88–95 (2018)

    Article  CAS  Google Scholar 

  65. Kumaravel, A., Chandrasekaran, M.: A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion. J. Electroanal. Chem. 650(2), 163–170 (2011)

    Article  CAS  Google Scholar 

  66. Li, C., Wang, C., Ma, Y., Hu, S.: Voltammetric determination of trace amounts of fenitrothion on a novel nano-TiO2 polymer film electrode. Microchim. Acta. 148(1), 27–33 (2004)

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Technology, Taiwan under Contract no. MOST 111-2113-M-027-002. This work was supported by the projects from NTUT-NJUST-110-01 and NSFC51872141, National Taipei University of Technology, and Nanjing University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5426 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundaresan, R., Mariyappan, V., Chen, TW. et al. One-dimensional rare-earth tungstate nanostructure encapsulated reduced graphene oxide electrocatalyst-based electrochemical sensor for the detection of organophosphorus pesticide. J Nanostruct Chem (2023). https://doi.org/10.1007/s40097-023-00524-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40097-023-00524-6

Keywords

Navigation