Skip to main content
Log in

Development of rutin-rGO/TiO2 nanocomposite for electrochemical detection and photocatalytic removal of 2,4-DCP

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

We report in this the development of nanocomposite rutin-reduced graphene oxide/titanium oxide (R-rGO/TiO2) through a chemical precipitation method to enhance the electrochemical detection and photocatalytic efficiency of the 2,4-dichlorophenol (DCP). The structural and morphological characterization of the as-fabricated nanocomposites were carried out by X-ray diffraction, Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy, transmission electron microscopy, etc. The R-rGO/TiO2 electrochemical sensor was developed for 2,4-dichlorophenol (DCP) and rutin oxidation based on composite altered glassy carbon electrode (GCE). Moreover, R-rGO/TiO2/GCE composite exhibited accomplished electrocatalytic activity towards DCP in the linear range 5–150 μM and a low detection limit of 0.02 μM (S/N = 3). The TiO2 nanomaterial was well embellished on the surface of the graphene sheets, which helps in electron transfer from TiO2 to graphene and hence interruption by recombination method, to the foremost R-rGO/TiO2/GCE enhance the photocatalytic activity. The electrochemically sensed pesticide intermediate 2,4-DCP was the photo-catalytically degraded by the same R-rGO/TiO2 nanocomposite for water remediation. The nanocomposite exhibits higher degradation efficiency on 2,4-DCP when compared with the individual materials. After the degradation, the degraded water was studied for the animal survival study using Artemia salina as the model eco-toxicology model.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

R-rGO/TiO2 :

Graphene oxide/titanium oxide

DCP:

2,4-Dichlorophenol

XRD:

X-ray diffraction

FT-IR:

Fourier transforms infrared spectroscopy

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

GCE:

Glassy carbon electrode

AS:

Artemia salina

VB:

Valence band

CB:

Conduction band

PBS:

Phosphate buffer solution

References

  1. I.Y. Pandya, Asian J. Appl. Sci. 2(2), 894–900 (2018)

    Google Scholar 

  2. M.S. Cooke, M.D. Evans, M. Dizdaroglu, J. Lunec, FASEB J. 17(10), 1195–1214 (2003)

    Article  CAS  Google Scholar 

  3. J. Huang, Q. Chang, Y.B. Ding, X.Y. Han, Chem. Eng. J. 254, 434–442 (2014)

    Article  CAS  Google Scholar 

  4. W. Chen, G.M. Zeng, G.Q. Chen, C. Zhang, M. Yan, Chemosphere 109, 208–212 (2014)

    Article  CAS  Google Scholar 

  5. Y. Higashi, Y. Fujii, J. Liq. Chromatogr. Relat. Technol. 32, 2372–2383 (2009)

    Article  CAS  Google Scholar 

  6. S. Columé, M. Cárdenas, M. Gallego, M. Valcárcel, J. Chromatogr. A 882(1–2), 193–203 (2000)

    Article  Google Scholar 

  7. Q. Feng, H. Li, Z. Zhang, J.-M. Lin, Analyst 136(10), 2156–2160 (2011)

    Article  CAS  Google Scholar 

  8. T. Hallaj, M. Amjadi, Microchim. Acta 183, 1219–1225 (2016)

    Article  CAS  Google Scholar 

  9. G. Peng, J.E. Ellis, G. Xu, X. Xu, A. Star, ACS Appl. Mater. Inter. 8(11), 7403–7410 (2016)

    Article  CAS  Google Scholar 

  10. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7(14), 1876–902 (2011)

    Article  CAS  Google Scholar 

  11. G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J.R. Gong, Adv. Mater. 25(28), 3820–39 (2013)

    Article  CAS  Google Scholar 

  12. J.M. Herrmann, J. Disdier, P. Pichat, S. Malato, J. Blanco, Appl. Catal. B-Environ. 17(1–2), 15–23 (1998)

    Article  CAS  Google Scholar 

  13. J. Chen, B. Yao, C. Li, G. Shi, Carbon 1(64), 225–229 (2013)

    Article  CAS  Google Scholar 

  14. C. Sánchez-Moreno, J.A. Larrauri, F. Saura-Calixto, Food Res. Int. 32(6), 407–412 (1999)

    Article  Google Scholar 

  15. A. Schaeffer, P. J. van den Brink, F. Heimbach, S. P. Hoy, F.M. de Jong, J. Rombke, M. Roß-Nickoll, J.P. Sousa, in 2nd SETAC Europe Special Science Symposium, SETAC Europe, pp. 53–56 (2009)

  16. B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Res. Innov. 3(2), 275–290 (2019)

    Google Scholar 

  17. A. Karci, Chemosphere 1(99), 1–8 (2014)

    Article  CAS  Google Scholar 

  18. X. Wang, E.N. Kalali, D.Y. Wang, ACS Sustain. Chem. Eng. 3(12), 3281–3290 (2015)

    Article  CAS  Google Scholar 

  19. Y. Guo, S. Guo, J. Ren, Y. Zhai, S. Dong, E. Wang, ACS nano 4(7), 4001–4010 (2010)

    Article  CAS  Google Scholar 

  20. S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, R.B. Kaner, ACS nano 4(7), 3845–3852 (2010)

    Article  CAS  Google Scholar 

  21. C. Bora, R. Pegu, B.J. Saikia, S.K. Dolui, Polym. Int. 63(12), 2061–2067 (2014)

    Article  CAS  Google Scholar 

  22. R. Ortega-Amaya, Y. Matsumoto, E. Díaz-Torres, C.D. Gutierrez-Lazos, M.A. Pérez-Guzmán, M. Ortega-López, Graphene Mater. Struct. Prop. Modif. 17, 129 (2017)

    Google Scholar 

  23. L. Wang, J. Kang, J.D. Nam, J. Suhr, A.K. Prasad, S.G. Advani, ECS Electrochem. Lett. 4(1), 11–4 (2015)

    Google Scholar 

  24. T. Sreethawong, S. Yoshikawa, Catal. Commun. 6(10), 661–668 (2005)

    Article  CAS  Google Scholar 

  25. T. Sainsbury, S. Gnaniah, S.J. Spencer, S. Mignuzzi, N.A. Belsey, K.R. Paton, A. Satti, Carbon 1(114), 367–376 (2017)

    Article  CAS  Google Scholar 

  26. A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8(4), 235 (2013)

    Article  CAS  Google Scholar 

  27. E. Smith, G. Dent, Modern Raman spectroscopy: a practical approach, pp. 129–150 (2005)

  28. D.H. Wang, L. Jia, X.L. Wu, L.Q. Lu, A.W. Xu, Nanoscale 4(2), 576–584 (2012)

    Article  CAS  Google Scholar 

  29. S.Y. Dong, P.H. Zhang, H. Liu, N. Li, T.L. Huang, Biosens. Bioelectron. 26, 4082–4087 (2011)

    Article  CAS  Google Scholar 

  30. J.Y. Liu, Y.N. Qin, D. Li, T.S. Wang, Y.Q. Liu, J. Wang, E.K. Wang, Biosens. Bioelectron. 41, 436–441 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Management and Administration of Karunya University for their support and help. The authors are grateful to Department of Science and Technology, Govt. of India for their financial support.

Funding

There is no availability of funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussions and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Samuel Vasanthkumar.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, S., Thamilselvan, A., Radhika, N. et al. Development of rutin-rGO/TiO2 nanocomposite for electrochemical detection and photocatalytic removal of 2,4-DCP. J IRAN CHEM SOC 18, 2457–2472 (2021). https://doi.org/10.1007/s13738-021-02205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02205-z

Keywords

Navigation