Skip to main content

Advertisement

Log in

One-step construction of Co(OH)2-anchored g-C3N4 and rGO with phase junction for dopamine sensing and oxygen evolution reaction

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Cobalt-based Layered double hydroxides (Co-LDHs) through designing composite nanostructures and heterogenous junctions, has absorbed an increased concern for dual-function applications including electrochemical sensing and energy devices. Herein, the g-C3N4 and GO are applied as two-dimensional (2D) scaffolds for one-pot synthesis of 2D α/β-Co(OH)2 phase junction (α/β-Co(OH)2/g–C3N4/rGO, denoted as CCG) in dopamine sensing and oxygen evolution reaction (OER). The coexist of hetero-phase structure (α and β-Co(OH)2) toward crystalline phase has been confirmed by various techniques. Dependent on hetero-phase structural and compositional characteristics of CCG, CCG has revealed excellent electrochemical performance: a ranking sensing response to dopamine with ppb-level sensitivity and wide detection range; and high electrocatalytic ability (38.02 mV dec−1) with more stable catalytic capacity toward oxygen evolution reaction (OER). The above considerable potentials for CCG ascribes to the synergistic effect of heterostructure, phase structure along with defect of α/β-Co(OH)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Salamon, J., Sathishkumar, Y., Ramachandran, K., Lee, Y.S., Yoo, D.J., Kim, A.R., Gnana Kumar, G.: One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosens. Bioelectron. 64, 269–276 (2015)

    Article  CAS  Google Scholar 

  2. Kuang, M., Zhang, J., Liu, D., Tan, H., Dinh, K.N., Yang, L., Ren, H., Huang, W., Fang, W., Yao, J., Hao, X., Xu, J., Liu, C., Song, L., Liu, B., Yan, Q.: Amorphous/crystalline heterostructured cobalt-vanadium-iron (oxy)hydroxides for highly efficient oxygen evolution reaction. Adv. Energy Mater. 10(43), 2002215 (2020)

    Article  CAS  Google Scholar 

  3. Kumar, R.S., Govindan, K., Ramakrishnan, S., Kim, A.R., Kim, J.S., Yoo, D.J.: Fe3O4 nanorods decorated on polypyrrole/reduced graphene oxide for electrochemical detection of dopamine and photocatalytic degradation of acetaminophen. Appl. Surf. Sci. 556, 149765 (2021)

    Article  Google Scholar 

  4. Ramachandran, R., Leng, X., Zhao, C., Xu, Z.X., Wang, F.: 2D siloxene sheets: a novel electrochemical sensor for selective dopamine detection. Appl. Mater. Today. 18, 100477 (2020)

    Article  Google Scholar 

  5. Gupta, N., Kaur, G., Sharma, V., Nagraik, R., Shandilya, M.: Increasing the efficiency of reduced graphene oxide obtained via high temperature electrospun calcination process for the electrochemical detection of dopamine. J. Electroanal. Chem. 904, 115904 (2022)

    Article  CAS  Google Scholar 

  6. Leal-Rodríguez, C., Rodríguez-Padrón, D., Alothman, Z.A., Cano, M., Giner-Casares, J.J., Muñoz-Batista, M.J., Osman, S.M., Luque, R.: Thermal and light irradiation effects on the electrocatalytic performance of hemoglobin modified Co3O4-g-C3N4 nanomaterials for the oxygen evolution reaction. Nanoscale 12(15), 8477–8484 (2020)

    Article  Google Scholar 

  7. Huang, M., Liu, W., Wang, L., Liu, J., Chen, G., You, W., Zhang, J., Yuan, L., Zhang, X., Che, R.: Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano Res. 13(3), 810–817 (2020)

    Article  CAS  Google Scholar 

  8. Kumar, R.S., Ramakrishnan, S., Prabhakaran, S., Kim, A.R., Kumar, D.R., Kim, D.H., Yoo, D.J.: Structural, electronic, and electrocatalytic evaluation of spinel transition metal sulfide supported reduced graphene oxide. J. Mater. Chem. A. 10(4), 1999–2011 (2022)

    Article  Google Scholar 

  9. Logeshwaran, N., Ramakrishnan, S., Chandrasekaran, S.S., Vinothkannan, M., Kim, A.R., Sengodan, S., Velusamy, D.B., Varadhan, P., He, J.H., Yoo, D.J.: An efficient and durable trifunctional electrocatalyst for zinc–air batteries driven overall water splitting. Appl. Catal. B. 297, 120405 (2021)

    Article  CAS  Google Scholar 

  10. Hao, C., Wu, Y., An, Y., Cui, B., Lin, J., Li, X., Wang, D., Jiang, M., Cheng, Z., Hu, S.: Interface-coupling of CoFe-LDH on MXene as high-performance oxygen evolution catalyst. Mater. Today Energy. 12, 453–462 (2019)

    Article  Google Scholar 

  11. Song, K., Li, W., Xin, J., Zheng, Y., Chen, X., Yang, R., Lv, W., Li, Q.: Hierarchical porous heterostructured Co(OH)2/CoSe2 nanoarray: a controllable design electrode for advanced asymmetrical supercapacitors. Chem. Eng. J. 419, 129435 (2021)

    Article  CAS  Google Scholar 

  12. Wang, W.D., Zhang, P.P., Gao, S.Q., Wang, B.Q., Wang, X.C., Li, M., Liu, F., Cheng, J.P.: Core-shell nanowires of NiCo2O4@α-Co(OH)2 on Ni foam with enhanced performances for supercapacitors. J. Colloid Interface Sci. 579, 71–81 (2020)

    Article  CAS  Google Scholar 

  13. Zhao, G., Zou, J., Chen, X., Yu, J., Jiao, F.: Layered double hydroxides materials for photo(electro-) catalytic applications. Chem. Eng. J. 397, 125407 (2020)

    Article  CAS  Google Scholar 

  14. Wan, L., Wang, P.: Recent progress on self-supported two-dimensional transition metal hydroxides nanosheets for electrochemical energy storage and conversion. In. J. Hydrog. Energy. 46(12), 8356–8376 (2021)

    Article  CAS  Google Scholar 

  15. Boumeriame, H., Da Silva, E.S., Cherevan, A.S., Chafik, T., Faria, J.L., Eder, D.: Layered double hydroxide (LDH)-based materials: a mini-review on strategies to improve the performance for photocatalytic water splitting. J. Energy Chem. 64, 406–431 (2022)

    Article  CAS  Google Scholar 

  16. Xie, W., Li, Z., Shao, M., Wei, M.: Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting. Front. Chem. Sci. Eng. 12(3), 537–554 (2018)

    Article  CAS  Google Scholar 

  17. Xie, Z.H., Zhou, H.Y., He, C.S., Pan, Z.C., Yao, G., Lai, B.: Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: a review. Chem. Eng. J. 414, 128713 (2021)

    Article  CAS  Google Scholar 

  18. Liu, G., Wang, Z., Shen, T., Zheng, X., Zhao, Y., Song, Y.F.: Atomically dispersed Rh-doped NiFe layered double hydroxides: precise location of rh and promoting hydrazine electrooxidation properties. Nanoscale 13(3), 1869–1874 (2021)

    Article  CAS  Google Scholar 

  19. Kong, X., Xia, B., Xiao, Y., Chen, H., Li, H., Chen, W., Wu, P., Shen, Y., Wu, J., Li, S., Huo, F., Zhang, W., Zheng, B.: Regulation of cobalt–nickel LDHs’ structure and components for optimizing the performance of an electrochemical sensor. ACS Appl. Nano Mater. 2(10), 6387–6396 (2019)

    Article  CAS  Google Scholar 

  20. Hu, Z., Zhang, D., Sun, C., Song, C., Wang, D.: One-step ionothermal accompanied thermolysis strategy for N-doped carbon quantum dots hybridized NiFe LDH ultrathin nanosheets for electrocatalytic water Oxidation. Electrochim. Acta. 391, 138932 (2021)

    Article  CAS  Google Scholar 

  21. Parvin, S., Hazra, V., Francis, A.G., Pati, S.K., Bhattacharyya, S.: In situ cation intercalation in the interlayer of tungsten sulfide with overlaying layered double hydroxide in a 2D heterostructure for facile electrochemical redox activity. Inorg. Chem. 60(10), 6911–6921 (2021)

    Article  CAS  Google Scholar 

  22. Kaur, G.A., Sharma, V., Gupta, N., Shandilya, M., Rai, R.: Structural and optical amendment of PVDF into CQDs through high temperature calcination process. Mater. Lett. 304, 130616 (2021)

    Article  CAS  Google Scholar 

  23. Sharma, V., Kaur, G.A., Gupta, N., Shandilya, M.: Growth mechanism of rGO/CDs by electrospun calcination process: structure and application. FlatChem. 24, 100195 (2020)

    Article  CAS  Google Scholar 

  24. Sriram, B.N., Baby, J., Wang, S.F., Ranjitha, M.R., Govindasamy, M., George, M.: Eutectic solvent-mediated synthesis of NiFe-LDH/sulfur-doped carbon nitride arrays: investigation of electrocatalytic activity for the dimetridazole sensor in human sustenance. ACS Sustain. Chem. Eng. 8(48), 17772–17782 (2020)

    Article  CAS  Google Scholar 

  25. Shahzad, A., Jawad, A., Ifthikar, J., Chen, Z., Chen, Z.: The hetero-assembly of reduced graphene oxide and hydroxide nanosheets as superlattice materials in PMS activation. Carbon 155, 740–755 (2019)

    Article  CAS  Google Scholar 

  26. Fu, L., Zhang, Y., Chang, B., Li, B., Zhou, S., Zhang, L., Yin, L.: A fluorine-modulated bulk-phase heterojunction and tolerance factor for enhanced performance and structure stability of cesium lead halide perovskite solar cells. J. Mater. Chem. A. 6(27), 13263–13270 (2018)

    Article  CAS  Google Scholar 

  27. Yang, K., Li, X., Yu, C., Zeng, D., Chen, F., Zhang, K., Huang, W., Ji, H.: Review on heterophase/homophase junctions for efficient photocatalysis: the case of phase transition construction. Chin. J. Catal. 40(6), 796–818 (2019)

    Article  CAS  Google Scholar 

  28. Tian, Y., Liu, X., Xu, L., Yuan, D., Dou, Y., Qiu, J., Li, H., Ma, J., Wang, Y., Su, D., Zhang, S.: Engineering crystallinity and oxygen vacancies of Co(II) oxide nanosheets for high performance and robust rechargeable Zn–air batteries. Adv. Funct. Mater. 31(20), 2101239 (2021)

    Article  CAS  Google Scholar 

  29. He, D., Cao, L., Huang, Y., Li, G., Feng, Y., Zhao, Y., Li, X., Li, D., Feng, L.: Tuning the morphologic and electronic structures of self-assembled NiSe/Ni3Se2 heterostructures with vanadium doping toward efficient electrocatalytic hydrogen production. Appl. Surf. Sci. 542, 148598 (2021)

    Article  CAS  Google Scholar 

  30. Tian, Y., Huang, A., Wang, Z., Wang, M., Wu, Q., Shen, Y., Zhu, Q., Fu, Y., Wen, M.: Two-dimensional hetero-nanostructured electrocatalyst of Ni/NiFe-layered double oxide for highly efficient hydrogen evolution reaction in alkaline medium. Chem. Eng. J. 426, 131827 (2021)

    Article  CAS  Google Scholar 

  31. Chen, Z., Zhang, S., Liu, Y., Alharbi, N.S., Rabah, S.O., Wang, S., Wang, X.: Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants. Sci. Total Environ. 731, 139054 (2020)

    Article  CAS  Google Scholar 

  32. Lakhera, S.K., Vijayarajan, V.S., Rishi Krishna, B.S., Veluswamy, P., Neppolian, B.: Cobalt phosphate hydroxide loaded g-C3N4 photocatalysts and its hydrogen production activity. In. J. Hydrog. Energy. 45(13), 7562–7573 (2020)

    Article  CAS  Google Scholar 

  33. Liang, C., Lin, H., Guo, W., Lu, X., Yu, D., Fan, S., Zhang, F., Qu, F.: Amperometric sensor based on ZIF/g-C3N4/RGO heterojunction nanocomposite for hydrazine detection. Electrochim. Acta. 188(2), 48 (2021)

    CAS  Google Scholar 

  34. Xie, M., Tang, J., Kong, L., Lu, W., Natarajan, V., Zhu, F., Zhan, J.: Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation. Chem. Eng. J. 360, 1213–1222 (2019)

    Article  CAS  Google Scholar 

  35. Huang, T., Moon, S.K., Lee, J.M.: A heterostructure of layered double hydroxide wrapped in few-layer carbon with iridium doping for efficient oxygen evolution. Electrochim. Acta. 296, 590–597 (2019)

    Article  CAS  Google Scholar 

  36. Hercule, K.M., Wei, Q., Khan, A.M., Zhao, Y., Tian, X., Mai, L.: Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability. Nano Lett. 13(11), 5685–5691 (2013)

    Article  CAS  Google Scholar 

  37. Song, B., Zeng, Z., Zeng, G., Gong, J., Xiao, R., Ye, S., Chen, M., Lai, C., Xu, P., Tang, X.: Powerful combination of g-C3N4 and LDHs for enhanced photocatalytic performance: a review of strategy, synthesis, and applications. Adv. Colloid Interface Sci. 272, 101999 (2019)

    Article  CAS  Google Scholar 

  38. Zhu, B., Xia, P., Ho, W., Yu, J.: Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 344, 188–195 (2015)

    Article  CAS  Google Scholar 

  39. Shandilya, M., Kaur, G.A., Rai, R.: Low temperature consequence on structural and impedance properties of BST ceramics via sol-hydrothermal method. Mater. Chem. Phys. 263, 124422 (2021)

    Article  CAS  Google Scholar 

  40. Thakur, S., Shandilya, M., Thakur, S., Sharma, D.K.: Growth mechanism and characterization of CuO nanostructure as a potent antimicrobial agent. Surf. Interfaces. 20, 100551 (2020)

    Article  CAS  Google Scholar 

  41. Shandilya, M., Kaur, G.A.: Low temperature crystal growth of lead-free complex perovskite nano-structure by using sol-gel hydrothermal process. J. Solid State Chem. 280, 120988 (2019)

    Article  CAS  Google Scholar 

  42. Kaur, G.A., Kumar, S., Thakur, S., Thakur, S., Shandilya, M.: Structural and ferroelectric growth of Ba0.85Mg0.15TiO3–Ga2O3 ceramic through hydrothermal method. J. Mater. Sci. Mater. Electron. 32(18), 23631–23644 (2021)

    Article  CAS  Google Scholar 

  43. Wang, J., Wang, Y., Zhang, D., Chen, C.: Intrinsic oxidase-like nanoenzyme Co4S3/Co(OH)2 hybrid nanotubes with broad-spectrum antibacterial activity. ACS Appl. Mater. Interfaces. 12(26), 29614–29624 (2020)

    CAS  Google Scholar 

  44. Li, L.: Graphene oxide: graphene quantum dot nanocomposite for better memristic switching behaviors. Nanomaterials 10(8), 1448 (2020)

    Article  CAS  Google Scholar 

  45. Fan, B., Chen, X., Hu, A., Tang, Q., Fan, H., Liu, Z., Xiao, K.: Facile synthesis of 3D plum candy-like ZnCo2O4 microspheres as a high-performance anode for lithium ion batteries. RSC Adv. 6(83), 79971–79977 (2016)

    Article  Google Scholar 

  46. Velasco-Velez, J.J., Pfeifer, V., Havecker, M., Weatherup, R.S., Arrigo, R., Chuang, C.H., Stotz, E., Weinberg, G., Salmeron, M., Schlogl, R., Knop-Gericke, A.: Photoelectron spectroscopy at the graphene-liquid interface reveals the electronic structure of an electrodeposited cobalt/graphene electrocatalyst. Angew Chem. Int. Ed. Engl. 54(48), 14554–14558 (2015)

    Article  CAS  Google Scholar 

  47. Leal-Rodríguez, C., Rodríguez-Padrón, D., Alothman, Z., Cano, M., Giner-Casares, J., Muñoz-Batista, M., Osman, S., Luque, R.: Thermal and light irradiation effects on the electrocatalytic performance of hemoglobin modified CoO-g-CN nanomaterials for the oxygen evolution reaction. Nanoscale 12(15), 8477–8484 (2020)

    Article  Google Scholar 

  48. Matthias, T., Katsumi, K., Alexander, V.N., James, P.O., Francisco, R.R., Jean, R., Kenneth, S.W.S.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure. Appl. Chem. 87(9–10), 1051–1069 (2015)

    Google Scholar 

  49. Jamil, N., Alias, N.H., Shahruddin, M.Z., Othman, N.H.: A green in situ synthesis of hybrid graphene-based zeolitic imidazolate framework-8 nanofillers using recycling mother liquor. Key Eng. Mater. 797, 48–54 (2019)

    Article  Google Scholar 

  50. Abdelhameed, R.M., Emam, H.E.: Design of ZIF(Co & Zn)@wool composite for efficient removal of pharmaceutical intermediate from wastewater. J. Colloid Interface Sci. 552, 494–505 (2019)

    Article  CAS  Google Scholar 

  51. Wang, K., Li, Q., Liu, B., Cheng, B., Ho, W., Yu, J.: Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B. 176–177, 44–52 (2015)

    Article  Google Scholar 

  52. Wu, J., Li, N., Fang, H.B., Li, X., Zheng, Y.Z., Tao, X.: Nitrogen vacancies modified graphitic carbon nitride: scalable and one-step fabrication with efficient visible-light-driven hydrogen evolution. Chem. Eng. J. 358, 20–29 (2019)

    Article  CAS  Google Scholar 

  53. Jyothi, N., Ganji, N., Daravath, S.: Shivara, J: Mononuclear cobalt(II), nickel(II) and copper(II) complexes: synthesis, spectral characterization and interaction study with nucleotide by in vitro biochemical analysis. J. Mol. Struct. 1207, 127799 (2020)

    Article  CAS  Google Scholar 

  54. Xue, B., Zhu, J., Liu, N., Li, Y.: Facile functionalization of graphene oxide with ethylenediamine as a solid base catalyst for knoevenagel condensation reaction. Catal. Commun. 64, 105–109 (2015)

    Article  CAS  Google Scholar 

  55. Zhang, Y., Lv, H., Zhang, Z., Wang, L., Wu, X., Xu, H.: Stable unbiased photo-electrochemical overall water splitting exceeding 3% efficiency via covalent triazine framework/metal oxide hybrid photoelectrodes. Adv. Mater. 33, e2008264 (2021)

    Article  Google Scholar 

  56. Zahra, T., Ahmad, K.S.: Functionalization of Mn2O3/PdO/ZnO electrocatalyst using organic template with accentuated electrochemical potential toward water splitting. Int. J. Energy Res. 46(1), 452–463 (2022)

    Article  CAS  Google Scholar 

  57. Frisenda, R., Molina-Mendoza, A.J., Mueller, T., Castellanos-Gomez, A., Van Der Zant, H.S.J.: Atomically thin p–n junctions based on two-dimensional materials. Chem. Soc. Rev. 47(9), 3339–3358 (2018)

    Article  CAS  Google Scholar 

  58. Wang, Y., Yin, C., Zhuang, Q.: An electrochemical sensor modified with nickel nanoparticle/nitrogen-doped carbon nanosheet nanocomposite for bisphenol A detection. J. Alloys Compd. 827, 154335 (2020)

    Article  CAS  Google Scholar 

  59. Shahrokhian, S., Naderi, L., Ghalkhani, M.: Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone. Mater. Sci. Eng. C. 61, 842–850 (2016)

    Article  CAS  Google Scholar 

  60. Chala, S.A., Tsai, M.C., Su, W.N., Ibrahim, K.B., Thirumalraj, B., Chan, T.S., Lee, J.F., Dai, H., Hwang, B.J.: Hierarchical 3D architectured Ag nanowires shelled with NiMn-layered double hydroxide as an efficient bifunctional oxygen electrocatalyst. ACS Nano 14(2), 1770–1782 (2020)

    Article  CAS  Google Scholar 

  61. Liu, Q., Xie, L., Qu, F., Liu, Z., Du, G., Asiri, A.M., Sun, X.: A porous Ni3N nanosheet array as a high-performance non-noble-metal catalyst for urea-assisted electrochemical hydrogen production. Inorg. Chem. Front. 4(7), 1120–1124 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 21771047 and 52072100), Natural Science Foundation of Heilongjiang Province, China (Nos. YQ2020E029 and TD2020B001), and Excellent Scientific Research Team Project of Harbin Normal University (No. XKYT202001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhang or Fengyu Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22538 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Zhang, F., Yu, K. et al. One-step construction of Co(OH)2-anchored g-C3N4 and rGO with phase junction for dopamine sensing and oxygen evolution reaction. J Nanostruct Chem (2023). https://doi.org/10.1007/s40097-022-00521-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40097-022-00521-1

Keywords

Navigation