Skip to main content
Log in

Structural and ferroelectric growth of Ba0.85Mg0.15TiO3–Ga2O3 ceramic through hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free perovskite materials Barium Magnesium Titanate (BMT) and composite of BMT/Ga2O3were prepared using environment friendly low temperature method. XRD peak profile analysis of pure BMT and nanocomposite of BMT/Ga2O3 to determine the crystallite size have been carried out using various calculations methods like Scherrer, Williamson–Hall, and Size–Strain plot. The crystallite size was found to increase with the addition of Ga2O3 in BMT. Moreover, XRD patterns reveal the pure and crystalline phase of the prepared samples. Raman study of BMT and BMT/Ga2O3 are showing the tetragonal symmetry. SEM studies revealed that the addition of Ga2O3 accelerates the grain growth of BMT whereas EDX indicated that there is no significant trace of any impurity and confirmed the stoichiometric presence of the expected elements within the sample. SAED patterns demonstrate broad concentric rings, which confirm the presence of crystalline powder. P–E hysteresis loop confirms the ferroelectric behaviour of the samples with increase in remnant polarization and the increase in coercive field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. R.N. Perumal, V. Athikesavan, Studies on 0.95 Bi0.5 (Na0.40K0.10) TiO3–0.05 (Ba0.7Sr0.3) TiO3 ceramics for piezoelectric applications under different sintering temperature. Ferroelectrics 540(1), 65–71 (2019)

    Article  CAS  Google Scholar 

  2. H. Palneedi et al., Lead-based and lead-free ferroelectric ceramic capacitors for electrical energy storage, in Ferroelectric materials for energy harvesting and storage. (Elsevier, Amsterdam, 2020), pp. 279–356

    Google Scholar 

  3. Y. Slimani et al., (BaTiO3) 1–x+ (Co0.5Ni0.5Nb0.06Fe1.94O4) x nanocomposites: structure, morphology, magnetic and dielectric properties. J. Am. Ceram. Soc. (2021). https://doi.org/10.1111/jace.17931

    Article  Google Scholar 

  4. M. Shandilya et al., Modification of structural and electrical properties of Ca element on barium titanate nano-material synthesized by hydrothermal method. Ferroelectrics 520(1), 93–109 (2017)

    Article  CAS  Google Scholar 

  5. M. Lal et al., Dielectric Relaxation in baTiO3 based Perovskite. in Smart materials for smart living. (Nova Science Publisher, 2017), pp. 345–363

  6. Y. Slimani et al., Study on the addition of SiO2 nanowires to BaTiO3: structure, morphology, electrical and dielectric properties. J. Phys. Chem. Solids 156, 110183 (2021)

    Article  CAS  Google Scholar 

  7. M. Mhareb et al., Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of bismuth and ytterbium. Ceram. Int. 46(18), 28877–28886 (2020)

    Article  CAS  Google Scholar 

  8. G.A. Kaur, S. Kumar, M. Shandilya, Fabrication of piezoelectric nanogenerator based on P (VDF-HFP) electrospun nanofiber mat-impregnated lead-free BCZT nanofillers. J. Mater. Sci. 31(22), 20303–20314 (2020)

    Google Scholar 

  9. Y. Slimani et al., Investigation of structural, morphological, optical, magnetic and dielectric properties of (1–x) BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. J. Magn. Magn. Mater. 510, 166933 (2020)

    Article  CAS  Google Scholar 

  10. Y. Slimani et al., Role of WO 3 nanoparticles in electrical and dielectric properties of BaTiO 3–SrTiO 3 ceramics. J. Mater. Sci. 31(10), 7786–7797 (2020)

    CAS  Google Scholar 

  11. M. Shandilya, G.A. Kaur, R. Rai, Low temperature consequence on structural and impedance properties of BST ceramics via sol-hydrothermal method. Mater. Chem. Phys. 263, 124422 (2021)

    Article  CAS  Google Scholar 

  12. Y. Slimani et al., Study of tungsten oxide effect on the performance of BaTiO 3 ceramics. J. Mater. Sci. 30(14), 13509–13518 (2019)

    CAS  Google Scholar 

  13. M. Arshad et al., Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics. Ceram. Int. 46(2), 2238–2246 (2020)

    Article  CAS  Google Scholar 

  14. Y. Slimani et al., Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO 3 ceramics. J. Mater. Sci. 30(10), 9520–9530 (2019)

    CAS  Google Scholar 

  15. Y. Slimani et al., Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3SrTiO3/(SiO2) x nanocomposites. Ceram. Int. 45(9), 11989–12000 (2019)

    Article  CAS  Google Scholar 

  16. Y. Slimani et al., Impact of planetary ball milling parameters on the microstructure and pinning properties of polycrystalline superconductor Y3Ba5Cu8Oy. Cryogenics 92, 5–12 (2018)

    Article  CAS  Google Scholar 

  17. E. Hannachi et al., Higher intra-granular and inter-granular performances of YBCO superconductor with TiO2 nano-sized particles addition. Ceram. Int. 44(15), 18836–18843 (2018)

    Article  CAS  Google Scholar 

  18. S. Gopalan, K. Mehta, A.V. Virkar, Synthesis of oxide perovskite solid solutions using the molten salt method. J. Mater. Res. 11(8), 1863–1865 (1996)

    Article  CAS  Google Scholar 

  19. W. Haron, A. Wisitsoraat, S. Wongnawa, Nanostructured perovskite oxides–LaMO3 (M= Al Co, Fe) prepared by co-precipitation method and their ethanol-sensing characteristics. Ceram. Int. 43(6), 5032–5040 (2017)

    Article  CAS  Google Scholar 

  20. M. Rakibuddin, H. Kim, M.E. Khan, Graphite-like carbon nitride (C3N4) modified N-doped LaTiO3 nanocomposite for higher visible light photocatalytic and photo-electrochemical performance. Appl. Surf. Sci. 452, 400–412 (2018)

    Article  CAS  Google Scholar 

  21. S.H. Lee et al., Preparation of LaCoO3 with high surface area for catalytic combustion by spray-freezing/freeze-drying method, in Studies in surface science and catalysis. (Elsevier, Amsterdam, 2004), pp. 463–468

    Google Scholar 

  22. M. Almessiere et al., Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites. Ultrason. Sonochem. 58, 104654 (2019)

    Article  CAS  Google Scholar 

  23. Y. Cao et al., Magnetization switching of rare earth orthochromite CeCrO3. Appl. Phys. Lett. 104(23), 232405 (2014)

    Article  CAS  Google Scholar 

  24. Y. Slimani et al., Ni0.4Cu0.2Zn0.4TbxFe2-xO4 nanospinel ferrites: ultrasonic synthesis and physical properties. Ultrason. Sonochem. 59, 104757 (2019)

    Article  CAS  Google Scholar 

  25. Y. Slimani et al., Structural, magnetic, optical properties and cation distribution of nanosized Ni0.3Cu0.3Zn0.4TmxFe2−xO4 (0.0≤ x≤ 0.10) spinel ferrites synthesized by ultrasound irradiation. Ultrason. Sonochem. 57, 203–211 (2019)

    Article  CAS  Google Scholar 

  26. E. Devi et al., Quantification of charge carriers participating antiferromagnetic to weak ferromagnetic phase transition in Na doped LaFeO3 nano multiferroics. J. Appl. Phys. 124(8), 084102 (2018)

    Article  CAS  Google Scholar 

  27. E. Hannachi et al., Dissipation mechanisms in polycrystalline YBCO prepared by sintering of ball-milled precursor powder. Physica B 430, 52–57 (2013)

    Article  CAS  Google Scholar 

  28. M. Almessiere, Y. Slimani, A. Baykal, Structural and magnetic properties of Ce-doped strontium hexaferrite. Ceram. Int. 44(8), 9000–9008 (2018)

    Article  CAS  Google Scholar 

  29. Y. Slimani et al., Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. 44(12), 14242–14250 (2018)

    Article  CAS  Google Scholar 

  30. J. Ma, X. Liu, W. Li, High piezoelectric coefficient and temperature stability of Ga2O3-doped (Ba0.99Ca0.01)(Zr0.02Ti0.98) O3 lead-free ceramics by low-temperature sintering. J. Alloys Compd. 581, 642–645 (2013)

    Article  CAS  Google Scholar 

  31. X. Dong et al., Structure, dielectric and energy storage properties of BaTiO3 ceramics doped with YNbO4. J. Alloy. Compd. 744, 721–727 (2018)

    Article  CAS  Google Scholar 

  32. M. Shandilya, R. Rai, A. Zeb, Structural and dielectric relaxor properties of Ba1-x Mg x TiO3 ceramics prepared through a hydrothermal route. Adv. Appl. Ceram. 117(5), 255–263 (2018)

    Article  CAS  Google Scholar 

  33. S. Akhtar et al., Synthesis of Mn0.5Zn0.5SmxEuxFe1.8−2xO4 nanoparticles via the hydrothermal approach induced anti-cancer and anti-bacterial activities. Nanomaterials 9(11), 1635 (2019)

    Article  CAS  Google Scholar 

  34. E. Hannachi et al., Fluctuation induced conductivity studies in YBa2Cu3Oy compound embedded by superconducting nano-particles Y-deficient YBa2Cu3Oy: effect of silver inclusion. Indian J. Phys. 90(9), 1009–1018 (2016)

    Article  CAS  Google Scholar 

  35. Y. Slimani et al., Comparative study of electrical transport and magnetic measurements of Y3Ba5Cu8O18±δ and YBa2Cu3O7−δ compounds: intragranular and intergranular superconducting properties. Appl. Phys. A 124(2), 91 (2018)

    Article  CAS  Google Scholar 

  36. M.A. Almessiere et al., A study on the spectral, microstructural, and magnetic properties of Eu–Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites synthesized by an ultrasonic-assisted approach. Ultrason. Sonochem. 62, 104847 (2020)

    Article  CAS  Google Scholar 

  37. M. Lal et al., Study of structural and magnetoelectric properties of 1–x (Ba 0.96 Ca 0.04 TiO3)–x (ZnFe2 O4) ceramic composites. J. Mater. Sci. 29(1), 80–85 (2018)

    CAS  Google Scholar 

  38. A. Stokes, A. Wilson, A method of calculating the integral breadths of Debye-Scherrer lines. Math. Proc. Camb. Phil. Soc. (1942). https://doi.org/10.1017/S0305004100021988

    Article  Google Scholar 

  39. Z. Jian-Min et al., Young’s modulus surface and Poisson’s ratio curve for tetragonal crystals. Chin. Phys. B 17(5), 1565 (2008)

    Article  Google Scholar 

  40. D.E. Gray, American Institute of Physics Handbook (McGraw-Hill, New York, 1972)

    Google Scholar 

  41. R. Das, S. Sarkar, X-ray diffraction analysis of synthesized silver nanohexagon for the study of their mechanical properties. Mater. Chem. Phys. 167, 97–102 (2015)

    Article  CAS  Google Scholar 

  42. K. Seevakan et al., Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. J. Magn. Magn. Mater. 486, 165254 (2019)

    Article  CAS  Google Scholar 

  43. O.G. Grendal et al., Controlled growth of SrxBa1-xNb2O6 hopper-and cube-shaped nanostructures by hydrothermal synthesis. Chemistry (2020). https://doi.org/10.1002/chem.202000373

    Article  Google Scholar 

  44. M. Shandilya, R. Rai, J. Singh, Review: hydrothermal technology for smart materials. Adv. Appl. Ceram. 115(6), 354–376 (2016)

    Article  CAS  Google Scholar 

  45. M. Shandilya, R. Rai, J. Singh, Review: hydrothermal technology for smart materials. Adv. Appl. Ceram. 115, 354–376 (2016)

    Article  CAS  Google Scholar 

  46. V. Sharma et al., Growth mechanism of rGO/CDs by electrospun calcination process: structure and application. FlatChem 24, 100195 (2020)

    Article  CAS  Google Scholar 

  47. A. Sobhani, M. Salavati-Niasari, Synthesis and characterization of FeSe2 nanoparticles and FeSe2/FeO (OH) nanocomposites by hydrothermal method. J. Alloy. Compd. 625, 26–33 (2015)

    Article  CAS  Google Scholar 

  48. M.R. Koblischka et al., Microstructure and fluctuation-induced conductivity analysis of Bi2Sr2CaCu2O8+ δ (Bi-2212) nanowire fabrics. Crystals 10(11), 986 (2020)

    Article  CAS  Google Scholar 

  49. M. Shandilya, G.A. Kaur, Low temperature crystal growth of lead-free complex perovskite nano-structure by using sol-gel hydrothermal process. J. Solid State Chem. 280, 120988 (2019)

    Article  CAS  Google Scholar 

  50. Y. Slimani et al., Comparative study of electrical transport and magnetic measurements of Y 3 Ba 5 Cu 8 O 18±δ and YBa 2 Cu 3 O 7− δ compounds: intragranular and intergranular superconducting properties. Appl. Phys. A 124(2), 1–10 (2018)

    Article  CAS  Google Scholar 

  51. M. Wang et al., Synthesis and characterization of sol–gel derived (Ba, Ca) (Ti, Zr) O3 nanoparticles. J. Mater. Sci. 23(3), 753–757 (2012)

    Google Scholar 

  52. A. Mamakhel et al., Continuous flow hydrothermal synthesis of rutile SnO2 nanoparticles: exploration of pH and temperature effects. J. Supercrit. Fluids 166, 105029 (2020)

    Article  CAS  Google Scholar 

  53. M. Almessiere, Y. Slimani, A. Baykal, Structural, morphological and magnetic properties of hard/soft SrFe12-xVxO19/(Ni0.5Mn0.5Fe2O4) y nanocomposites: effect of vanadium substitution. J. Alloys Compd. 767, 966–975 (2018)

    Article  CAS  Google Scholar 

  54. N.G. Khlebtsov et al., Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications. Theranostics 10(5), 2067 (2020)

    Article  CAS  Google Scholar 

  55. E.K. Nyutu et al., Effect of microwave frequency on hydrothermal synthesis of nanocrystalline tetragonal barium titanate. J. Phys. Chem. C 112(26), 9659–9667 (2008)

    Article  CAS  Google Scholar 

  56. A.D. Korkmaz et al., Microstructural, optical, and magnetic properties of vanadium-substituted nickel spinel nanoferrites. J. Supercond. Novel Magn. 32(4), 1057–1065 (2019)

    Article  CAS  Google Scholar 

  57. Q. Hu et al., Achieve ultrahigh energy storage performance in BaTiO3–Bi (Mg1/2Ti1/2) O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy 67, 104264 (2020)

    Article  CAS  Google Scholar 

  58. M. Shandilya, R. Verma, Impedance modulated dielectric and magnetic properties of BCT-NF multiferroic composite. J. Magn. Magn. Mater. 527, 167782 (2021)

    Article  CAS  Google Scholar 

  59. G.A. Kaur et al., Structural and optical amendment ofPVDF into CQDsthrough high temperature calcination process. Mater. Lett. 304, 130616 (2021)

    Article  CAS  Google Scholar 

  60. M. Frey et al., The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics. Ferroelectrics 206(1), 337–353 (1998)

    Article  Google Scholar 

  61. A. Kumar et al., Poling electric field dependent domain switching and piezoelectric properties of mechanically activated (Pb 0.92 La 0.08)(Zr 0.60 Ti 0.40) O 3 ceramics. J. Mater. Sci. 26(6), 3757–3765 (2015)

    CAS  Google Scholar 

  62. M. Mahesh, V.B. Prasad, A. James, Enhanced dielectric and ferroelectric properties of lead-free Ba (Zr0.15Ti0.85) O3 ceramics compacted by cold isostatic pressing. J. Alloys Compd. 611, 43–49 (2014)

    Article  CAS  Google Scholar 

  63. A.I. Ali, C.W. Ahn, Y.S. Kim, Enhancement of piezoelectric and ferroelectric properties of BaTiO3 ceramics by aluminum doping. Ceram. Int. 39(6), 6623–6629 (2013)

    Article  CAS  Google Scholar 

  64. A. Thakre et al., Artificially induced normal ferroelectric behaviour in aerosol deposited relaxor 65PMN–35PT thick films by interface engineering. J. Mater. Chem. C 9(10), 3403–3411 (2021)

    Article  CAS  Google Scholar 

  65. B.C. Keswani et al., Correlation between structural, ferroelectric, piezoelectric and dielectric properties of Ba0.7Ca0.3TiO3-xBaTi0.8Zr0.2O3 (x = 0.45, 0.55) ceramics. Ceram. Int. 44(17), 20921–20928 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Shoolini University of Biotechnology & Management Sciences, Solan (H. P.) for providing financial aid and laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Shandilya.

Ethics declarations

Conflict of interest

The authors state that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G.A., Kumar, S., Thakur, S. et al. Structural and ferroelectric growth of Ba0.85Mg0.15TiO3–Ga2O3 ceramic through hydrothermal method. J Mater Sci: Mater Electron 32, 23631–23644 (2021). https://doi.org/10.1007/s10854-021-06854-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06854-x

Navigation