Skip to main content
Log in

Double-grafted chitosans as siRNA nanocarriers: effects of diisopropylethylamine substitution and labile-PEG coating

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The preparation of safe and efficient siRNA carriers remains a challenge that has limited the therapeutic applications of siRNA. In this study, the design of a new small interfering RNA (siRNA) carrier based on diisopropylaminoethyl-chitosan was devised for application in non-viral gene therapy. Polycations having varied proportions (11–32%) of diisopropylethylamine groups (DIPEA) and grafted with polyethylene glycol (1–3%) were synthesized and characterized. The physicochemical and biological properties of the polymers and their nanoparticles were evaluated at pH 6.3 and pH 7.4. The degrees of ionization at pH 7.4 were precisely controlled by the composition and increased from 13% for chitosan to 47% for the more substituted derivative. Nanoparticles with very low toxicities and sizes in the range of 100–200 nm, remained stable up to 24 h after their preparation in both the evaluated pHs under plasma osmolality. As probed by scanning electron and confocal microscopies, an efficient cell uptake of spherical nanoparticles mediated a TNFα knockdown of almost 60% in RAW 264.7 macrophages, and mRNA silence levels higher than the Lipofectamine (up to 90%) in HeLa cells. Overall, the results showed that these derivatives are promising vectors for in vivo studies under physiological conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mirzaei, S., Mahabady, M.K., Zabolian, A., et al.: Small interfering RNA (siRNA) to target genes and molecular pathways in glioblastoma therapy: current status with an emphasis on delivery systems. Life Sci. 275, 119368 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. Mirzaei, S., Gholami, M.H., Hashemi, F., et al.: Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: approaching to a new era of cancer chemotherapy. Life Sci. 277, 119430 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. Rossi, J.J., Rossi, D.J.: siRNA drugs: here to stay. Mol. Ther. 29, 431 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tavakoli, N., Divsalar, A., Haertlé, T., et al.: Milk protein-based nanodelivery systems for the cancer treatment. J. Nanostruct. Chem. 11, 483–500 (2021)

    Article  CAS  Google Scholar 

  5. Ashrafizadeh, M., Delfi, M., Hashemi, F., et al.: Biomedical application of chitosan-based nanoscale delivery systems: potential usefulness in siRNA delivery for cancer therapy. Carbohydr. Polym. 260, 117809 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. Lavertu, M., Méthot, S., Tran-Khanh, N., Buschmann, M.D.: High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 27, 4815 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. Jennings, J.A., Bumgarden, J.D.: Chitosan Based Biomaterials Volume 2: Tissue Engineering and Therapeutics. Woodhead Publishing, Amsterdam (2017)

    Google Scholar 

  8. Alameh, M., Lavertu, M., Tran-Khanh, N.: siRNA delivery with chitosan: influence of chitosan molecular weight, degree of deacetylation, and amine to phosphate ratio on in vitro silencing efficiency, hemocompatibility, biodistribution, and in vivo efficacy. Biomacromol 19, 112–131 (2018)

    Article  CAS  Google Scholar 

  9. Dehousse, V., Garbacki, N., Jaspart, S., et al.: Comparison of chitosan/siRNA and trimethylchitosan/siRNA complexes behaviour in vitro. Int. J. Biol. Macromol. 46, 342–349 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Soliman, O.Y., Alameh, M.G., De Cresenzo, G., et al.: Efficiency of chitosan/hyaluronan-based mRNA delivery systems in vitro: influence of composition and structure. J. Pharm. Sci. 109, 1581–1593 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. Oliveira, F.D.P.P., Picola, I.P.D., Shi, Q., et al.: Synthesis and evaluation of diethylethylamine-chitosan for gene delivery: composition effects on the in vitro transfection efficiency. Nanotechnology 24, 055101 (2013)

    Article  Google Scholar 

  12. Picola, I.P.D., Shi, Q., Fernandes, J.C., et al.: Chitosan derivatives for gene transfer: effect of phosphorylcholine and diethylaminoethyl grafts on the in vitro transfection efficiency. J. Biomater. Sci. Polym. Ed. 27, 1611–1630 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. De Souza, R.H.F.V., Picola, I.P.D., Shi, Q., et al.: Diethylaminoethyl-chitosan as an efficient carrier for siRNA delivery: improving the condensation process and the nanoparticles properties. Int. J. Biol. Macromol. 119, 186–197 (2018)

    Article  PubMed  Google Scholar 

  14. Jones, C.H., Chen, C.K., Ravikrishnan, A., et al.: Overcoming nonviral gene delivery barriers: perspective and future. Mol. Pharm. 10, 4082–4098 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giacomelli, F.C., Stepánek, P., Giacomelli, C., et al.: pH-triggered block copolymer micelles based on a pH-responsive PDPA (poly[2-(diisopropylamino)ethyl methacrylate]) inner core and a PEO (poly(ethylene oxide)) outer shell as a potential tool for the cancer therapy. Soft Matter 7, 9316–9325 (2011)

    Article  CAS  Google Scholar 

  16. Zhou, K., Liu, H., Zhang, S., et al.: Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J. Am. Chem. Soc. 134, 7803–7811 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, G., Xu, Y., Chen, M., et al.: Tumor-penetrating peptide modified and pH-sensitive polyplexes for tumor targeted siRNA delivery. Polym. Chem. 7, 3857–3863 (2016)

    Article  CAS  Google Scholar 

  18. Cao, Y., Tan, Y.F., Wong, Y.S., et al.: Recent advances in chitosan-based carriers for gene delivery. Mar. Drugs 17, 381 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tiera, M.J., Shi, Q., Winnik, F.M., Fernandes, J.C.: Polycation-based gene therapy: current knowledge and new perspectives. Curr. Gene Ther. 11, 288–306 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. Blanco, E., Shen, H., Ferrari, M.: Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abbaszadeh, F., Moradi, O., Norouzi, M., Sabzevari, O.: Improvement single-wall carbon nanotubes (SWCNTs) based on functionalizing with monomers 2-hydroxyethylmethacryate (HEMA) and N-vinylpyrrolidone (NVP) for pharmaceutical applications as cancer therapy. J. Ind. Eng. Chem. 20, 2895–2900 (2014)

    Article  CAS  Google Scholar 

  22. Partikel, K., Korte, R., Stein, N.C., et al.: Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. Eur. J. Pharm. Biopharm. 141, 70–80 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. Tang, G.P., Zeng, J.M., Gao, S.J., et al.: Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials 24, 2351–2362 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Rheiner, S., Bae, Y.: Increased poly(ethylene glycol) density decreases transfection efficacy of siRNA/poly(ethylene imine) complexes. AIMS Bioeng. 3, 454–467 (2016)

    Article  CAS  Google Scholar 

  25. Yang, C., Gao, S., Dagnæs-Hansen, F., et al.: Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in vitro and in vivo. ACS Appl. Mater. Interfaces 9, 12203–12216 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. Cabral, H., Miyata, K., Osada, K., Kataoka, K.: Block copolymer micelles in nanomedicine applications. Chem. Rev. 118, 6844–6892 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. Agirre, M., Zarate, J., Ojeda, E., et al.: Low molecular weight chitosan (LMWC)-based polyplexes for pDNA delivery: from bench to bedside. Polymers 6, 1727–1755 (2014)

    Article  Google Scholar 

  28. Du, B., Jiang, X., Huang, Y., et al.: Tailoring kidney transport of organic dyes with low-molecular-weight PEGylation. Bioconj. Chem. 31, 241–247 (2019)

    Article  Google Scholar 

  29. Zhang, Y., Satterlee, A., Huang, L.: In vivo gene delivery by nonviral vectors: overcoming hurdles? Mol. Ther. 20, 1298–1304 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tiera, M.J., Shi, Q., Barbosa, H.F.G., Fernandes, J.C.: Polymeric systems as nanodevices for siRNA delivery. Curr. Gene Ther. 13, 358–369 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Tamura, A., Yui, N.: Lysosomal-specific cholesterol reduction by biocleavable polyrotaxanes for ameliorating niemann-pick type C disease. Sci. Rep. 4, 1–8 (2014)

    Article  Google Scholar 

  32. Wang, X., Cai, X., Hu, J., et al.: Glutathione-triggered “off-on” release of anticancer drugs from dendrimer-encapsulated gold nanoparticles. J. Am. Chem. Soc. 135, 9805–9810 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. Adriaansen, J., Vervoordeldonk, M.J.B.M., Tak, P.P.: Gene therapy as a therapeutic approach for the treatment of rheumatoid arthritis: innovative vectors and therapeutic genes. Rheumatology 45, 656–668 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Ta, W., Chawla, A., Pollard, J.W.: Origins and hallmarks of macrophages: development, homeostasis, and disease. Nature 496, 445–455 (2013)

    Article  Google Scholar 

  35. Pandi, P., Jain, A., Raju, S., Khan, W.: Therapeutic approaches for the delivery of TNF-α siRNA. Ther. Deliv. 8, 343–355 (2017)

    Article  CAS  PubMed  Google Scholar 

  36. Staudacher, A.H., Al-Ejeh, F., Fraser, C.K., et al.: The La antigen is over-expressed in lung cancer and is a selective dead cancer cell target for radioimmunotherapy using the La-specific antibody APOMAB®. EJNMMI Res. 4, 1–13 (2014)

    Article  Google Scholar 

  37. Tiera, M.J., Qiu, X.P., Bechaouch, S., et al.: Synthesis and characterization of phosphorylcholine-substituted chitosans soluble in physiological pH conditions. Biomacromol 7, 3151–3156 (2006)

    Article  CAS  Google Scholar 

  38. Martins, G.O., Petrônio, M.S., Lima, A.M.F., et al.: Amphipathic chitosans improve the physicochemical properties of siRNA-chitosan nanoparticles at physiological conditions. Carbohydr. Polym. 216, 332–342 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. Gunn, J., Paranji, R.K., Zhang, M.: A simple and highly sensitive method for magnetic nanoparticle quantitation using 1H-NMR spectroscopy. Biophys. J. 97, 2640–2647 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gabriel, J.D.S., Tiera, M.J., Tiera, V.A.D.O.: Synthesis, characterization, and antifungal activities of amphiphilic derivatives of diethylaminoethyl chitosan against Aspergillus flavus. J. Agric. Food Chem. 63, 5725–5731 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. Richard, I., Thibault, M., De Crescenzo, G., et al.: Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromol 14, 1732–1740 (2013)

    Article  CAS  Google Scholar 

  42. Rai, R., Alwani, S., Badea, I.: Polymeric nanoparticles in gene therapy: new avenues of design and optimization for delivery applications. Polymers 11, 745 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barreto, J.C.G., Tita, D.L., Orlandia, M.O.: Development of an automated method to perform a quantitative study of particle size distribution and the effect of a conductive layer in scanning electron microscopy. Quim. Nova 42, 447–452 (2019)

    CAS  Google Scholar 

  44. Fernandes, J.C., Qiu, X., Winnik, F.M., et al.: Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies. Int. J. Nanomed. 7, 5833 (2012)

    CAS  Google Scholar 

  45. Fujita, S., Sakairi, N.: Water soluble EDTA-linked Chitosan as a zwitterionic flocculant for pH sensitive removal of Cu(II) ion. RSC Adv. 6, 10385–10392 (2016)

    Article  CAS  Google Scholar 

  46. Fiamingo, A., Campana-Filho, S.P.: Structure, morphology and properties of genipin-crosslinked carboxymethylchitosan porous membranes. Carbohydr. Polym. 143, 155–163 (2016)

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, K., Helm, J., Peschel, D.: NMR and FT Raman characterisation of regioselectively sulfated chitosan regarding the distribution of sulfate groups and the degree of substitution. Polymer 51, 4698–4705 (2010)

    Article  CAS  Google Scholar 

  48. Zhang, J., Xia, W., Liu, P., et al.: Chitosan modification and pharmaceutical/biomedical applications. Mar. Drugs 8, 1962–1987 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jain, A., Gulbake, A., Shilpi, S., et al.: A new horizon in modifications of chitosan: syntheses and applications. Crit. Rev. Ther. Drug Carr. Syst. 30, 91 (2013)

    Article  CAS  Google Scholar 

  50. Thomas, D.P., William, C.E., Jennifer, L.S., Graham, T.J.: Cell Biology, 3rd edn. Elsevier, Philadelphia (2016)

    Google Scholar 

  51. Vermeulen, L.M., De Smedt, S.C., Remaut, K., Braeckmans, K.: The proton sponge hypothesis: fable or fact? Eur. J. Pharm. Biopharm. 129, 184–190 (2018)

    Article  CAS  PubMed  Google Scholar 

  52. Casey, J.R., Grinstein, S., Orlowski, J.: Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010)

    Article  CAS  PubMed  Google Scholar 

  53. Doriti, A., Brosnan, S.M., Weidner, S.M., Schlaad, H.: Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base. Polym. Chem. 7, 3067–3070 (2016)

    Article  CAS  Google Scholar 

  54. Serrano-Sevilla, I., Artiga, Á., Mitchell, S.G., et al.: Natural polysaccharides for siRNA delivery: nanocarriers based on chitosan, hyaluronic acid, and their deerivatives. Molecules 24, 2570 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Layek, B., Singh, J.: Chitosan for DNA and gene therapy. In: Jennings, J.A., Bumgarden, J.D. (eds.) Chitosan Based Biomaterials Volume 2: Tissue Engineering and Therapeutics, pp. 209–244. Woodhead Publishing, Amsterdam (2017)

    Chapter  Google Scholar 

  56. Chen, H., Cui, S., Zhao, Y., et al.: Grafting chitosan with polyethylenimine in an ionic liquid for efficient gene delivery. PLoS ONE 10, e0121817 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kean, T., Roth, S., Thanou, M.: Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J. Control. Release 103, 643–653 (2005)

    Article  CAS  PubMed  Google Scholar 

  58. Layek, B., Singh, J.: Caproic acid grafted chitosan cationic nanocomplexes for enhanced gene delivery: effect of degree of substitution. Int. J. Pharm. 447, 182–191 (2013)

    Article  CAS  PubMed  Google Scholar 

  59. Liu, X., Howard, K.A., Dong, M., et al.: The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 28, 1280–1288 (2007)

    Article  CAS  PubMed  Google Scholar 

  60. Yue, Z.G., Wei, W., Lv, P.P., et al.: Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromol 12, 2440–2446 (2011)

    Article  CAS  Google Scholar 

  61. Makvandi, P., Chen, M., Sartorius, R., et al.: Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. Nano Today 40, 101279 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Picola, I.P.D., Busson, K.A.N., Casé, A.H., et al.: Effect of ionic strength solution on the stability of chitosan-DNA nanoparticles. J. Exp. Nanosci. 8, 703–7016 (2013)

    Article  Google Scholar 

  63. Behzadi, S., Serpooshan, V., Tao, W., et al.: Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saptarshi, S.R., Duschl, A., Lopata, A.L.: Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J. Nanobiotechnology. 11, 1–12 (2013)

    Article  Google Scholar 

  65. Carlos, M.I.S., Zheng, K., Garrett, N., et al.: Limiting the level of tertiary amines on polyamines leads to biocompatible nucleic acid vectors. Int. J. Pharm. 526, 106–124 (2017)

    Article  Google Scholar 

  66. Gormley, A.J., Ghandehari, H.: Evaluation of toxicity of nanostructures in biological systems. In: Sahu, S.C., Casciano, D.A. (eds.) Nanotoxicity: From In Vivo and In Vitro Models to Health Risks, pp. 115–159. Wiley, Hoboken (2009)

    Chapter  Google Scholar 

  67. Kim, B., Park, J.H., Sailor, M.J.: Rekindling RNAi therapy: materials design requirements for in vivo siRNA delivery. Adv. Mater. 31, 1903637 (2019)

    Article  CAS  Google Scholar 

  68. Hao, G., Xu, Z.P., Li, L.: Manipulating extracellular tumour pH: an effective target for cancer therapy. RSC Adv. 8, 22182–22192 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guţoaia, A., Schuster, L., Margutti, S., et al.: Fine-tuned PEGylation of chitosan to maintain optimal siRNA-nanoplex bioactivity. Carbohydr. Polym. 143, 25–34 (2016)

    Article  PubMed  Google Scholar 

  70. Ping, Y., Liu, C., Zhang, Z., et al.: Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Biomaterials 32, 8328–8341 (2011)

    Article  CAS  PubMed  Google Scholar 

  71. Germershaus, O., Mao, S., Sitterberg, J., et al.: Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure-activity relationships in vitro. J. Control. Release 125, 145–154 (2008)

    Article  CAS  PubMed  Google Scholar 

  72. Ragelle, H., Riva, R., Vandermeulen, G., et al.: Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J. Control. Release 176, 54–63 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the São Paulo Research Foundation, FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) grant n. 2017/10331-5. A. M. Martinez-Junior acknowledge the support of the National Council for the Improvement of Higher Education, CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) grant n. 2017/10331-5. A. M. Martinez-Junior and M. S. Petrônio acknowledge the support of FAPESP (grants 2019/27801-0 and 2015/05148-1). J. Fernandes and M. Benderour would like to thank the Ministère de l’Économie, de la Science et de l’Innovation du Québec, (PSR-SIIRI-960) and the Chaire de Recherche en Orthopédie de l’Université de Montréal à l’Hôpital du Sacré-Cœur de Montréal). The authors would also like to thank: the CMIB-UNESP (EMU-FAPESP project nº 2009/53989-4) for instrumentation access and Dr. F. R. de Moraes for his help with 13C NMR analysis; Dr. S. C. M. Agustinho and A. L. Tognon (MSc) for help with 1H NMR analysis (IQSC-USP); the LMA-IQ (UNESP) laboratory for providing SEM facilities and Dr. D. Tita for his assistance with Scanning Electron Microscopy; Dr. M. F. Lima (LQBOA Group-UNESP/IBILCE), Dr. M. P. S Cabrera (Peptides Research Group-UNESP/IBILCE) and Dr. C. R. B. Domingos (LHGDH Group-UNESP/IBILCE) for access to facilities and instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio José Tiera.

Ethics declarations

Conflict of interest

MJT, JCF, AMMJ, RHFVS and MB have filed for a patent on the nanoparticles described in this study. The authors report no other conflicts of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40097_2022_487_MOESM1_ESM.docx

Supplementary file1 1H and 13C NMR spectra, dynamic light scattering measurements, cytotoxicity in RAW 264.7 cells, 3D confocal images, GPC chromatograms, and titrations data can be found in the supplementary information of the manuscript. (DOCX 5337 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez Junior, A.M., de Souza, R.H.F.V., Petrônio, M.S. et al. Double-grafted chitosans as siRNA nanocarriers: effects of diisopropylethylamine substitution and labile-PEG coating. J Nanostruct Chem 13, 605–624 (2023). https://doi.org/10.1007/s40097-022-00487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00487-0

Keywords

Navigation