Skip to main content
Log in

Electrochemical sensing platform based on ZrO2/BiVO4 nanocomposite for gastro-prokinetic drug in human blood serum

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The enduring period has witnessed various advancements for diverse highlights, such as, speed, selectivity, and decreased expense of electrochemical sensors, especially in the field of pharmaceutical research. Novel materials such as mixed oxide-based nanocomposites always fascinate researchers for their extraordinary properties. Here, based on the use of nanocomposite consisting of ZrO2 and BiVO4 (ZBV) nanoparticles, an electrochemical sensor has been created. The nanocomposite modified glassy carbon electrode (GCE) was used for voltammetric detection of a gastro-prokinetic agent Itopride (ITP). The nanocomposite was characterized for its morphological, structural, and compositional features via XRD, FESEM, EDAX, HRTEM, FTIR and XPS techniques. ZBV/GCE strongly promoted the oxidation current of ITP, as indicated in cyclic and square wave voltammograms. The electrocatalytic process was governed by an adsorption-controlled phenomenon involving one electron and one proton during an oxidation reaction. The oxidation current, best operated at working voltage 0.93 V (vs. Ag/AgCl), increased linearly in the concentration range of 100–1400 nM. The modified GCE exhibited a low detection limit (39.35 nM), good reproducibility (1.81% RSD) and selectivity in presence of other interferents. The application of the developed sensor was scrutinized in pharmaceutical formulation and the biological sample (human blood serum) with satisfactory recoveries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

References

  1. Luo, X., Morrin, A., Killard, A.J., Smyth, M.R.: Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18, 319–326 (2006)

    Article  CAS  Google Scholar 

  2. Ansari, S., Ansari, M.S., Devnani, H., Satsangee, S.P., Jain, R.: CeO2/g-C3N4 nanocomposite: a perspective for electrochemical sensing of anti-depressant drug. Sens. Actuators B Chem. 273, 1226–1236 (2018)

    Article  CAS  Google Scholar 

  3. Devnani, H., Ansari, S., Satsangee, S.P., Jain, R.: ZrO2–graphene–chitosan nanocomposite modified carbon paste sensor for sensitive and selective determination of dopamine. Mater. Today Chem. 4, 17–25 (2017)

    Article  Google Scholar 

  4. Ansari, S., Ansari, M.S., Satsangee, S.P., Jain, R.: Bi2O3/ZnO nanocomposite: synthesis, characterizations and its application in electrochemical detection of Balofloxacin as an anti-biotic drug. J. Pharm. Anal. 11, 57–67 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ansari, S., Ansari, M.S., Satsangee, S., Jain, R.: WO3 decorated graphene nanocomposite based electrochemical sensor: a prospect for the detection of anti-anginal drug. Anal. Chim. Acta 1046, 99–109 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. Namini, A.S., Delbari, S.A., Mousavi, M., Ghasemi, J.B.: Synthesis and characterization of novel ZnO/NiCr2O4 nanocomposite for water purification by degradation of tetracycline and phenol under visible light irradiation. Mater. Res. Bull. 139, 111247 (2021)

    Article  CAS  Google Scholar 

  7. Al-Ghamdi, A.A., Khedr, M.H., Shahnawaze Ansari, M., Hasan, P.M.Z., Abdel-wahab, M.S., Farghali, A.A.: RF sputtered CuO thin films: structural, optical and photo-catalytic behavior. Phys. E Low Dimens. Syst. Nanostruct. 81, 83–90 (2016)

    Article  CAS  Google Scholar 

  8. Ansari, M.S., Othman, M.H.D., Ansari, M.O., Ansari, S., Yusop, M.Z.M.: Room temperature growth of half-metallic Fe3O4 thin films on polycarbonate by reactive sputtering: heterostructures for flexible spintronics. J. Alloys Compd. 816, 152532 (2020)

    Article  CAS  Google Scholar 

  9. Ansari, M.S., Othman, M.H.D., Ansari, M.O., Ansari, S., Abdullah, H.: Reactively sputtered half-metallic Fe3O4 thin films at room temperature on polymethyl methacrylate: a perspective for flexible spintronics. Ceram. Int. 46, 19302–19310 (2020)

    Article  CAS  Google Scholar 

  10. Mousavi, M., Soleimani, M., Hamzehloo, M., Badiei, A., Ghasemi, J.B.: Photocatalytic degradation of different pollutants by the novel gCN-NS/Black-TiO2 heterojunction photocatalyst under visible light: introducing a photodegradation model and optimization by response surface methodology (RSM). Mater. Chem. Phys. 258, 123912 (2021)

    Article  CAS  Google Scholar 

  11. Ma, Q., Zhang, H., Guo, R., Cui, Y., Deng, X., Cheng, X., et al.: A novel strategy to fabricate plasmonic Ag/AgBr nano-particle and its enhanced visible photocatalytic performance and mechanism for degradation of acetaminophen. J. Taiwan Inst. Chem. Eng. 80, 176–183 (2017)

    Article  CAS  Google Scholar 

  12. Movlaee, K., Ganjali, M.R., Norouzi, P., Neri, G.: Iron-based nanomaterials/graphene composites for advanced electrochemical sensors. Nanomaterials 7, 406 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kaur, G., Kaur, A., Kaur, H.: Review on nanomaterials/conducting polymer based nanocomposites for the development of biosensors and electrochemical sensors. Polym. Plast. Technol. Mater. 60, 502–519 (2021)

    CAS  Google Scholar 

  14. Topal, B.D., Sener, C.E., Kaya, B., Ozkan, S.A.: Nano-sized metal and metal oxide modified electrodes for pharmaceuticals analysis. Curr. Pharm. Anal. 17, 421–436 (2021)

    Article  CAS  Google Scholar 

  15. Agnihotri, A.S., Varghese, A., Nidhin, M.: Transition metal oxides in electrochemical and bio sensing: a state-of-art review. Appl. Surf. Sci. Adv. 4, 100072 (2021)

    Article  Google Scholar 

  16. Zeid, E.A., Nassar, A., Hussein, M., Alam, M., Asiri, A.M., Hegazy, H., et al.: Mixed oxides CuO–NiO fabricated for selective detection of 2-aminophenol by electrochemical approach. J. Mater. Res. Technol. 9, 1457–1467 (2020)

    Article  Google Scholar 

  17. Schmidt, T., Oliveira, P.W., Mennig, M., Schmidt, H.: Preparation of optical axial GRIN components through migration of charged amorphous ZrO2 nanoparticles inside an organic–inorganic hybrid matrix by electrophoresis. J. Noncryst. Solids 353, 2826–2831 (2007)

    Article  CAS  Google Scholar 

  18. Kumar, S., Kumar, S., Srivastava, S., Yadav, B.K., Lee, S.H., Sharma, J.G., et al.: Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosens. Bioelectron. 73, 114–122 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. Venu, M., Venkateswarlu, S., Reddy, Y.V.M., Seshadri Reddy, A., Gupta, V.K., Yoon, M., et al.: Highly sensitive electrochemical sensor for anticancer drug by a zirconia nanoparticle-decorated reduced graphene oxide nanocomposite. ACS Omega 3, 14597–14605 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohammadizadeh, N., Mohammadi, S.Z., Kaykhaii, M.: Novel electrochemical sensor based on ZrO2 nanoparticles modified glassy carbon electrode for low-trace level determination of amlodipine by differential pulse voltammetry. Anal. Bioanal. Electrochem. 9, 390–399 (2017)

    CAS  Google Scholar 

  21. Vinothkumar, V., Sangili, A., Chen, S.-M., Abinaya, M.: Additive-free synthesis of BiVO4 microspheres as an electrochemical sensor for determination of antituberculosis drug rifampicin. Colloids Surf. A Physicochem. Eng. Asp. 624, 126849 (2021)

    Article  CAS  Google Scholar 

  22. Afonso, R., Eisele, A.P.P., Serafim, J.A., Lucilha, A.C., Duarte, E.H., Tarley, C.R.T., et al.: BiVO4–Bi2O3/ITO electrodes prepared by layer-by-layer: application in the determination of atenolol in pharmaceutical formulations and urine. J. Electroanal. Chem. 765, 30–36 (2016)

    Article  CAS  Google Scholar 

  23. Obregón, S., Caballero, A., Colón, G.: Hydrothermal synthesis of BiVO4: structural and morphological influence on the photocatalytic activity. Appl. Catal. B 117, 59–66 (2012)

    Article  Google Scholar 

  24. Kim, T.W., Choi, K.-S.: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Yu, Z., Lv, S., Ren, R., Cai, G., Tang, D.: Photoelectrochemical sensing of hydrogen peroxide at zero working potential using a fluorine-doped tin oxide electrode modified with BiVO4 microrods. Microchim. Acta 184, 799–806 (2017)

    Article  CAS  Google Scholar 

  26. Derbali, M., Othmani, A., Kouass, S., Touati, F., Dhaouadi, H.: BiVO4/TiO2 nanocomposite: electrochemical sensor for hydrogen peroxide. Mater. Res. Bull. 125, 110771 (2020)

    Article  CAS  Google Scholar 

  27. Jaihindh, D.P., Thirumalraj, B., Chen, S.-M., Balasubramanian, P., Fu, Y.-P.: Facile synthesis of hierarchically nanostructured bismuth vanadate: an efficient photocatalyst for degradation and detection of hexavalent chromium. J. Hazard. Mater. 367, 647–657 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. Yin, W.-J., Wei, S.-H., Al-Jassim, M.M., Turner, J., Yan, Y.: Doping properties of monoclinic BiVO4 studied by first-principles density-functional theory. Phys. Rev. B 83, 155102 (2011)

    Article  Google Scholar 

  29. Gupta, K., Joshi, R., Chawla, R., Wadodkar, S.: UV spectrophotometric method for theestimation of itopride hydrochloride in pharmaceutical formulation. J. Chem. 7, S49–S54 (2010)

    CAS  Google Scholar 

  30. Singh, S.S., Jain, M., Sharma, K., Shah, B., Vyas, M., Thakkar, P., et al.: Quantitation of itopride in human serum by high-performance liquid chromatography with fluorescence detection and its application to a bioequivalence study. J. Chromatogr. B 818, 213–220 (2005)

    Article  CAS  Google Scholar 

  31. Ma, J., Yuan, L.-H., Ding, M.-J., Zhang, J., Zhang, Q., Xu, Q.-W., et al.: Determination of itopride hydrochloride in human plasma by RP-HPLC with fluorescence detection and its use in bioequivalence study. Pharmacol. Res. 59, 189–193 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. Nigović, B., Mornar, A., Sertić, M.: Graphene nanocomposite modified glassy carbon electrode for voltammetric determination of the antipsychotic quetiapine. Microchim. Acta 183, 1459–1467 (2016)

    Article  Google Scholar 

  33. Dastan, D.: Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A 123, 699 (2017)

    Article  Google Scholar 

  34. Zhu, X., Yang, J., Dastan, D., Garmestani, H., Fan, R., Shi, Z.: Fabrication of core-shell structured Ni@ BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Compos. Part A Appl. Sci. Manuf. 125, 105521 (2019)

    Article  CAS  Google Scholar 

  35. Wang, Z., Liu, G., Zhang, L., Wang, H.: Electrochemical detection of trace cadmium in soil using a Nafion/stannum film-modified molecular wire carbon paste electrodes. Ionics (Kiel) 19, 1687–1693 (2013)

    Article  CAS  Google Scholar 

  36. Sengar, M.S., Saxena, S., Satsangee, S.P., Jain, R.: CuO decorated polyaniline nanocomposite-based sensor for the electrochemical determination of an opioid analgesic. Ionics (Kiel) 28, 903–918 (2022)

    Article  CAS  Google Scholar 

  37. Kokab, T., Shah, A., Khan, M.A., Nisar, J., Ashiq, M.N.: Electrochemical sensing platform for the simultaneous femtomolar detection of amlodipine and atorvastatin drugs. RSC Adv. 11, 27135–27151 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, A., Zhang, J., Cui, N., Tie, X., An, Y., Li, L.: Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO4 photocatalyst. J. Mol. Catal. A Chem. 304, 28–32 (2009)

    Article  CAS  Google Scholar 

  39. Tan, G., Zhang, L., Ren, H., Wei, S., Huang, J., Xia, A.: Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method. ACS Appl. Mater. Interfaces 5, 5186–5193 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. Gao, X., Wang, Z., Fu, F., Li, W.: Effects of pH on the hierarchical structures and photocatalytic performance of Cu-doped BiVO4 prepared via the hydrothermal method. Mater. Sci. Semicond. Process. 35, 197–206 (2015)

    Article  CAS  Google Scholar 

  41. Zhou, L., Wang, W., Zhang, L., Xu, H., Zhu, W.: Single-crystalline BiVO4 microtubes with square cross-sections: microstructure, growth mechanism, and photocatalytic property. J. Phys. Chem. C 111, 13659–13664 (2007)

    Article  CAS  Google Scholar 

  42. Wang, F., Xu, J., Lin, S., Cao, W.: Effects of NH4+ and Cl on the preparation of nanocrystalline TiO2 by hydrothermal method. Res. Chem. Intermed. 39, 1645–1654 (2013)

    Article  CAS  Google Scholar 

  43. Thalluri, S.M., Hernandez, S., Bensaid, S., Saracco, G., Russo, N.: Green-synthesized W-and Mo-doped BiVO4 oriented along the 0 4 0 facet with enhanced activity for the sun-driven water oxidation. Appl. Catal. B 180, 630–636 (2016)

    Article  CAS  Google Scholar 

  44. Lin, Y.-J., Chen, W.-C., Chin, Y.-M., Liu, C.-J.: Hysteresis mechanism in current–voltage characteristics of ZrOx films prepared by the sol–gel method. J. Phys. D 42, 045419 (2009)

    Article  Google Scholar 

  45. Kumari, L., Li, W., Xu, J., Leblanc, R., Wang, D., Li, Y., et al.: Controlled hydrothermal synthesis of zirconium oxide nanostructures and their optical properties. Cryst. Growth Des. 9, 3874–3880 (2009)

    Article  CAS  Google Scholar 

  46. Sinhamahapatra, A., Jeon, J.-P., Kang, J., Han, B., Yu, J.-S.: Oxygen-deficient zirconia (ZrO2x): a new material for solar light absorption. Sci. Rep. 6, 27218 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kang, S., Pawar, R.C., Pyo, Y., Khare, V., Lee, C.S.: Size-controlled BiOCl–RGO composites having enhanced photodegradative properties. J. Exp. Nanosci. 11, 259–275 (2016)

    Article  CAS  Google Scholar 

  48. Zhao, Z., Dai, H., Deng, J., Liu, Y., Au, C.T.: Effect of sulfur doping on the photocatalytic performance of BiVO4 under visible light illumination. Chin. J. Catal. 34, 1617–1626 (2013)

    Article  CAS  Google Scholar 

  49. Gopalakrishnan, R., Gopinath, C., Ramasamy, P.: X-ray photoelectron spectroscopic studies of sellinite and eulytite BGO and BSO crystals. Cryst. Res. Technol. 31, 249–254 (1996)

    Article  CAS  Google Scholar 

  50. Bondarenka, V., Grebinskij, S., Mickevičius, S., Tvardauskas, H., Kačiulis, S.: Determination of vanadium valence in hydrated compounds. J. Alloys Compd. 382, 239–243 (2004)

    Article  CAS  Google Scholar 

  51. Srilakshmi, C., Nagaraju, P., Sreedhar, B., Prasad, P.S., Kalevaru, V.N., Lücke, B., et al.: Ammoxidation activity of in situ synthesized ammonium salt of molybdophosphoric acid on VOPO4 catalysts. Catal. Today 141, 337–343 (2009)

    Article  CAS  Google Scholar 

  52. Zhou, Q., Huang, J., Wang, J., Yang, Z., Liu, S., Wang, Z., et al.: Preparation of a reduced graphene oxide/zirconia nanocomposite and its application as a novel lubricant oil additive. RSC Adv. 5, 91802–91812 (2015)

    Article  CAS  Google Scholar 

  53. Yao, B.H., Min, L., Ma, Z.Y., Wang, C.: Synthesis and characterization of hollow core-shell ZrO2@ void@ BiVO4 visible-light photocatalyst. Adv. Mater. Res. 148–149, 1331–1338 (2011)

    Google Scholar 

  54. Sivakumar, V., Suresh, R., Giribabu, K., Narayanan, V.: BiVO4 nanoparticles: preparation, characterization and photocatalytic activity. Cogent Chem. 1, 1074647 (2015)

    Article  Google Scholar 

  55. Lv, D., Zhang, D., Pu, X., Kong, D., Lu, Z., Shao, X., et al.: One-pot combustion synthesis of BiVO4/BiOCl composites with enhanced visible-light photocatalytic properties. Sep. Purif. Technol. 174, 97–103 (2017)

    Article  CAS  Google Scholar 

  56. Bard, A.J., Faulkner, L.R.: Student Solutions Manual to accompany Electrochemical Methods: Fundamentals and Applications, 2e. John Wiley & Sons (2002)

    Google Scholar 

  57. Sultan, S., Shah, A., Khan, B., Nisar, J., Shah, M.R., Ashiq, M.N., et al.: Calix [4] arene derivative-modified glassy carbon electrode: a new sensing platform for rapid, simultaneous, and picomolar detection of Zn (II), Pb (II), As (III), and Hg (II). ACS Omega 4, 16860–16866 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tao, T., Zhou, Y., He, C., He, H., Ma, M., Cai, Z., et al.: Highly sensitive methyl parathion sensor based on Au-ZrO2 nanocomposites modified graphene electrochemical transistor. Electrochim. Acta 357, 136836 (2020)

    Article  CAS  Google Scholar 

  59. Laviron, E., Vallat, A., Meunier-Prest, R.: The reduction mechanism of aromatic nitro compounds in aqueous medium: part V. The reduction of nitrosobenzene between pH 0.4 and 13. J. Electroanal. Chem. 379, 427–435 (1994)

    Article  Google Scholar 

  60. Gosser, D.K.: Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms. VCH, New York (1993)

    Google Scholar 

  61. Thapliyal, N., Osman, N.S., Patel, H., Karpoormath, R., Goyal, R.N., Moyo, T., et al.: NiO–ZrO2 nanocomposite modified electrode for the sensitive and selective determination of efavirenz, an anti-HIV drug. RSC Adv. 5, 40057–40064 (2015)

    Article  CAS  Google Scholar 

  62. Laviron, E.: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 101, 19–28 (1979)

    Article  CAS  Google Scholar 

  63. Fotouhi, L., Fatollahzadeh, M., Heravi, M.M.: Electrochemical behavior and voltammetric determination of sulfaguanidine at a glassy carbon electrode modified with a multi-walled carbon nanotube. Int. J. Electrochem. Sci. 7, 3919–3928 (2012)

    CAS  Google Scholar 

  64. Masui, M., Sayo, H., Tsuda, Y.: Anodic oxidation of amines. Part I. Cyclic voltammetry of aliphatic amines at a stationary glassy-carbon electrode. J. Chem. Soc. B Phys. Org. 973–976 (1968)

  65. Horner, L., Kirmse, W.: Studien zum Ablauf der Substitution IX Zur oxydativen Entalkylierung gemischt substituierter tertiärer Amine durch Dibenzoylperoxyd. Justus Liebigs Ann. Chem. 597, 48–65 (1955)

    Article  CAS  Google Scholar 

  66. Adenier, A., Chehimi, M.M., Gallardo, I., Pinson, J., Vilà, N.: Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. Langmuir 20, 8243–8253 (2004)

    Article  CAS  PubMed  Google Scholar 

  67. Bukkitgar, S.D., Shetti, N.P., Kulkarni, R.M.: Construction of nanoparticles composite sensor for atorvastatin and its determination in pharmaceutical and urine samples. Sens. Actuators B Chem. 255, 1462–1470 (2018)

    Article  CAS  Google Scholar 

  68. Abdulaziz Nabil, A., Emran, K., Alanazi, H.: Voltammetric determination of itopride using carbon paste electrode modified with Gd doped TiO2 nanotubes. Turk. J. Chem. 44, 1122 (2020)

    Article  Google Scholar 

  69. Hun, X., Zhang, Z.: Electrogenerated chemiluminescence sensor for itopride with Ru (bpy) 32+-doped silica nanoparticles/chitosan composite films modified electrode. Sens. Actuators B Chem. 131, 403–410 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors convey their gratefulness to the University Grants Commission (UGC) for offering Maulana Azad National Fellowship for minority students.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Shahnawaze Ansari or Soami Piara Satsangee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, S., Ansari, M.S., Satsangee, S.P. et al. Electrochemical sensing platform based on ZrO2/BiVO4 nanocomposite for gastro-prokinetic drug in human blood serum. J Nanostruct Chem 13, 361–375 (2023). https://doi.org/10.1007/s40097-022-00473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00473-6

Keywords

Navigation