Skip to main content
Log in

Recent progress in graphenes: synthesis, covalent functionalization and environmental applications

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Graphene is a 2D monolayer assembly of carbon atoms organized in a hexagonal fashion. Due to their exclusive structural, opto-mechanical, and electrical attributes, graphene-based nanostructures have found diverse applications in chemistry, physics, electronics, environment, and so on. We, herein, undertake an in-depth review of the available approaches to fabricate and chemically functionalize graphene and graphene-based nanostructures for diverse environmental implications. Different covalent functionalization approaches, including nucleophilic addition, electrophilic substitution, cycloaddition, and free radical additions, have been highlighted with their general schemes, supported by some relevant citations. The oxygenated moieties on graphenes provide reactive sites to extend their novel functionalities. The choice of chemical functionalities present on graphenes may determine and tailor their desirable properties for diverse environmental applications. Some major environmental implications of graphene-based materials have been presented, herein, including organic, heavy metals and toxic gaseous removal and detection, water desalination, and photocatalysis as well as sustainability aspects of functionalized graphenes. The study concludes with current opportunities and future recommendations in this domain.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Novoselov, K., Jiang, D., Schedin, F., Booth, T., Khotkevich, V., Morozov, S., Geim, A.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102, 10451–10453 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yu, W., Sisi, L., Haiyan, Y., Jie, L.: Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv. 10, 15328–15345 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manjunatha, G., George, R., Hiremath, I.: Functionalized graphene for epoxy composites with improved mechanical properties. Am. J. Mater. Sci. 6, 41–46 (2016)

    Google Scholar 

  4. Bhimanapati, G.R., Lin, Z., Meunier, V., et al.: Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. He, H., Klinowski, J., Forster, M., Lerf, A.: A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998)

    Article  CAS  Google Scholar 

  6. Acik, M., Chabal, Y.: A review on reducing graphene oxide for band gap engineering. J. Mater. Sci. Res. 2, 5539 (2012)

    Google Scholar 

  7. Wang, A., Yu, W., Huang, Z., et al.: Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Sci. Rep. 6, 23325 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Georgakilas, V., Tiwari, J.N., Kemp, K.C., Perman, J.A., Bourlinos, A.B., Kim, K.S., Zboril, R.J.: Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116, 5464–5519 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, S., Zheng, Z., Peng, H., Sun, J., Zhao, X.-E., Liu, H.: Quadruplex stable isotope derivatization strategy for the determination of panaxadiol and panaxatriol in foodstuffs and medicinal materials using ultra high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 1616, 460794 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. Khan, A.H., Ghosh, S., Pradhan, B., Dalui, A., Shrestha, L.K., Acharya, S., Ariga, K.: Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull. Chem. Soc. Jpn. 90, 627–648 (2017)

    Article  Google Scholar 

  11. Punetha, V.D., Rana, S., Yoo, H.J., Chaurasia, A., McLeskey, J.T., Ramasamy, M.S., Sahoo, N.G., Cho, J.W.: Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene. Prog. Polym. Sci. 67, 1–47 (2017)

    Article  CAS  Google Scholar 

  12. Farjadian, F., Abbaspour, S., Sadatlu, M.A.A., Mirkiani, S., Ghasemi, A., Hoseini-Ghahfarokhi, M., Mozaffari, N., Karimi, M., Hamblin, M.R.: Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: a review. ChemistrySeclect 5, 10200–10219 (2020)

    Article  CAS  Google Scholar 

  13. Barhoum, A., Pal, K., Rahier, H., Uludag, H., Kim, I.S., Bechelany, M.: Nanofibers as new-generation materials: from spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today 17, 1–35 (2019)

    Article  Google Scholar 

  14. Manchala, S., Pal, K., Shanker, V.: A facile soft-template synthetic approach of surface integrated nitrogen-rich carbon nanospheres for light-weight supercapacitors. J. Mol. Struct. 1229, 129788 (2021)

    Article  CAS  Google Scholar 

  15. Pal, K., Asthana, N., Aljabali, A.A., Bhardwaj, S.K., Kralj, S., Penkova, A., Thomas, S., Zaheer, T., de Souza, G.F.: A critical review on multifunctional smart materials ‘nanographene’emerging avenue: nano-imaging and biosensor applications. Crit. Rev. Solid State Mater. Sci. (2021). https://doi.org/10.1080/10408436.2021.1935717

    Article  Google Scholar 

  16. Sagadevan, S., Pal, K., Chowdhury, Z.Z., Foley, M.: Compounds, controllable synthesis of graphene/ZnO-nanocomposite for novel switching. J. Alloys Compd. 728, 645–654 (2017)

    Article  CAS  Google Scholar 

  17. Sturala, J., Luxa, J., Pumera, M., Sofer, Z.: Chemistry of graphene derivatives: synthesis, applications, and perspectives. Chem. Eur. J. 24, 5992–6006 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. Pal, K., Aljabali, A.A.A., Kralj, S., Thomas, S., de Souza, F.G.: Graphene-assembly liquid crystalline and nanopolymer hybridization: a review on switchable device implementations. Chemosphere 263, 128104 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. Pal, K., Si, A., El-Sayyad, G.S., Elkodous, M.A., Kumar, R., El-Batal, A.I., Kralj, S., Thomas, S.: Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: optoelectronics and biotechnological aspects. Crit. Rev. Solid State Mater. Sci. (2020). https://doi.org/10.1080/10408436.2020.1805295

    Article  Google Scholar 

  20. Thurakkal, S., Zhang, X.: Recent advances in chemical functionalization of 2D black phosphorous nanosheets. Adv. Sci. 7, 1902359 (2020)

    Article  CAS  Google Scholar 

  21. Asiya, S., Kyzas, G.Z., Pal, K., de Jr Souza, F.G.: Graphene functionalized hybrid nanomaterials for industrial-scale applications: A systematic review. J. Mol. Struct. 1239, 130518 (2021)

    Article  Google Scholar 

  22. Acharyya, D., Bhattacharyya, P.: Functionalization of graphene and its derivatives for developing efficient solid-state gas sensors: trends and challenges, functional nanomaterials. In: Thomas, S., Joshi, N., Tomer, V. (eds.) Functional nanomaterials—materials horizons: from nature to nanomaterials, pp. 245–284. Springer, Singapore (2020)

    Chapter  Google Scholar 

  23. Jayan, J.S., Pal, K., Saritha, A., Deeraj, B., Joseph, K.: Graphene oxide as multi-functional initiator and effective molecular reinforcement in PVP/epoxy composites. J. Mol. Struct. 1230, 129873 (2021)

    Article  CAS  Google Scholar 

  24. Zhang, S., Li, B., Wang, X., Zhao, G., Hu, B., Lu, Z., Wen, T., Chen, J., Wang, X.: Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chem. Eng. J. 390, 124642 (2020)

    Article  CAS  Google Scholar 

  25. Jayasena, B., Melkote, S.N.: An investigation of PDMS stamp assisted mechanical exfoliation of large area graphene. Proced. Manuf. 1, 840–853 (2015)

    Article  Google Scholar 

  26. Ma, L.P., Ren, W., Cheng, H.M.: Transfer methods of graphene from metal substrates: a review. Samll Methods 3, 1900049 (2019)

    Google Scholar 

  27. Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A. 3, 11700–11715 (2015)

    Article  CAS  Google Scholar 

  28. Tyurnina, A.V., Tzanakis, I., Morton, J., Mi, J., Porfyrakis, K., Maciejewska, B.M., Grobert, N., Eskin, D.G.: Ultrasonic exfoliation of graphene in water: a key parameter study. Carbon 168, 737–747 (2020)

    Article  CAS  Google Scholar 

  29. Zaaba, N., Foo, K., Hashim, U., Tan, S., Liu, W.-W., Voon, C.H.: Synthesis of graphene oxide using modified hummers method: solvent influence. Proced. Eng. 184, 469–477 (2017)

    Article  CAS  Google Scholar 

  30. Gong, Y., Ping, Y., Li, D., Luo, C., Ruan, X., Fu, Q., Pan, C.: Preparation of high-quality graphene via electrochemical exfoliation and spark plasma sintering and its applications. Appl. Surf. Sci. 397, 213–219 (2017)

    Article  CAS  Google Scholar 

  31. Abdelkader, A., Cooper, A., Dryfe, R.A., Kinloch, I.: How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7, 6944–6956 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. Zheng, Q.-F., Guo, Y., Liang, Y., Shen, Q.: Graphene nanoribbons from electrostatic-force-controlled electric unzipping of single-and multi-walled carbon nanotubes. ACS Appl. Nano Mater. 3, 4708–4716 (2020)

    Article  CAS  Google Scholar 

  33. Hirsch, A.: Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons. Angew. Chem. Int. Ed. 48, 6594–6596 (2009)

    Article  CAS  Google Scholar 

  34. Tanaka, H., Arima, R., Fukumori, M., Tanaka, D., Negishi, R., Kobayashi, Y., Kasai, S., Yamada, T.K., Ogawa, T.: Method for controlling electrical properties of single-layer graphene nanoribbons via adsorbed planar molecular nanoparticles. Sci. Rep. 5, 12341 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang, T., Huang, D., Yang, Z., Xu, S., He, G., Li, X., Hu, N., Yin, G., He, D., Zhang, L.: A Review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8, 95–119 (2016)

    Article  Google Scholar 

  36. Schedin, F., Geim, A., Morozov, S., Hill, E., Blake, P., Katsnelson, M., Novoselov, K.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. Caicedo, F.M.C., López, E.V., Agarwal, A., Drozd, V., Durygin, A., Hernandez, A.F., Wang, C.: Synthesis of graphene oxide from graphite by ball milling. Diam. Relat. Mater. 109, 108064 (2020)

    Article  Google Scholar 

  38. Zhao, W., Fang, M., Wu, F., Wu, H., Wang, L., Chen, G.: Preparation of graphene by exfoliation of graphite using wet ball milling. J. Mater. Chem. 20, 5817–5819 (2010)

    Article  CAS  Google Scholar 

  39. Deng, S., Qi, X.-D., Zhu, Y.-L., Zhou, H.-J., Chen, F., Fu, Q.: A facile way to large-scale production of few-layered graphene via planetary ball mill. Chin. J. Polym. Sci. 34, 1270–1280 (2016)

    Article  CAS  Google Scholar 

  40. Zhu, H., Cao, Y., Zhang, J., Zhang, W., Xu, Y., Guo, J., Yang, W., Liu, J.: One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries. J. Mater. Sci. 51, 3675–3683 (2016)

    Article  CAS  Google Scholar 

  41. Huang, M., Ruoff, R.S.: Growth of single-layer and multilayer graphene on Cu/Ni alloy substrates. Acc. Chem. Res. 53, 800–811 (2020)

    Article  CAS  PubMed  Google Scholar 

  42. Orofeo, C.M., Ago, H., Hu, B., Tsuji, M.: Synthesis of large area, homogeneous, single layer graphene films by annealing amorphous carbon on Co and Ni. Nano Res. 4, 531–540 (2011)

    Article  CAS  Google Scholar 

  43. Li, C., Li, D., Yang, J., Zeng, X., Yuan, W.: Preparation of single-and few-layer graphene sheets using co deposition on SiC substrate. J. Nanomater. 2011, 44 (2011)

    Article  Google Scholar 

  44. Kim, J., Lee, G., Kim, J.: Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation. Appl. Phys. Lett. 107, 033104 (2015)

    Article  Google Scholar 

  45. Zhang, X.-F., Zhu, X.-Y., Feng, J.-J., Wang, A.-J.: Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction. Appl. Surf. Sci. 428, 798–808 (2018)

    Article  CAS  Google Scholar 

  46. Singh, D.K., Iyer, P., Giri, P.: Improved chemical synthesis of graphene using a safer solvothermal route. Int. J. Nanosci. 10, 39–42 (2011)

    Article  CAS  Google Scholar 

  47. Shin, Y., Park, J., Hyun, D., Yang, J., Lee, J.-H., Kim, J.-H., Lee, H.: Acid-free and oxone oxidant-assisted solvothermal synthesis of graphene quantum dots using various natural carbon materials as resources. Nanoscale 7, 5633–5637 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. Yang, X., Zhang, G., Prakash, J., Chen, Z., Gauthier, M., Sun, S.: Chemical vapour deposition of graphene: layer control, the transfer process, characterisation, and related applications. Int. Rev. Phys. Chem. 38, 149–199 (2019)

    Article  CAS  Google Scholar 

  49. Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., Dai, H.: Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 3, 538 (2008)

    Article  CAS  PubMed  Google Scholar 

  50. Chaitoglou, S., Pascual, E., Bertran, E., Andujar, J.: Effect of a balanced concentration of hydrogen on graphene CVD growth. J. Nanomater. 2016, 9640935 (2016)

    Article  Google Scholar 

  51. Park, H.J., Meyer, J., Roth, S., Skákalová, V.: Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48, 1088–1094 (2010)

    Article  CAS  Google Scholar 

  52. Wang, Y., Zheng, Y., Xu, X., Dubuisson, E., Bao, Q., Lu, J., Loh, K.P.: Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5, 9927–9933 (2011)

    Article  CAS  PubMed  Google Scholar 

  53. Hu, B., Ago, H., Ito, Y., Kawahara, K., Tsuji, M., Magome, E., Sumitani, K., Mizuta, N., Ikeda, K.-I., Mizuno, S.: Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD. Carbon 50, 57–65 (2012)

    Article  CAS  Google Scholar 

  54. Yang, W., Chen, G., Shi, Z., Liu, C.-C., Zhang, L., Xie, G., Cheng, M., Wang, D., Yang, R., Shi, D., Watanabe, K., Taniguchi, T., Yao, Y., Zhang, Y., Zhang, G.: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. Hwang, J., Kim, M., Campbell, D., Alsalman, H.A., Kwak, J.Y., Shivaraman, S., Woll, A.R., Singh, A.K., Hennig, R.G., Gorantla, S., Rümmeli, M.H., Spencer, M.G.: van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7, 385–395 (2013)

    Article  CAS  PubMed  Google Scholar 

  56. Van Bommel, A.J., Crombeen, J.E., Van Tooren, A.: LEED and Auger electron observations of the SiC (0001) surface. Surf. Sci. 48, 463–472 (1975)

    Article  Google Scholar 

  57. Heer W.D.: The development of epitaxial graphene for 21st century electronics. arXiv 1012, 1644 (2010)

  58. Hass, J., Feng, R., Li, T., Li, X., Zong, Z., de Heer, W.A., First, P.N., Conrad, E.H.: Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 89, 143106 (2006)

    Article  Google Scholar 

  59. Hass, J., Millán-Otoya, J., First, P.N., Conrad, E.H.: Interface structure of epitaxial graphene grown on 4H-SiC (0001). Phys. Rev. B 78, 205424 (2008)

    Article  Google Scholar 

  60. Saraswat, V., Jacobberger, R.M., Arnold, M.S.: Materials science challenges to graphene nanoribbon electronics. ACS Nano 15, 3674–3708 (2021)

    Article  CAS  PubMed  Google Scholar 

  61. Denis, P.A., Iribarne, F.: Comparative study of defect reactivity in graphene. J. Phys. Chem. C 117, 19048–19055 (2013)

    Article  CAS  Google Scholar 

  62. Chua, C.K., Pumera, M.: Covalent chemistry on graphene. Chem. Soc. Rev. 42, 3222–3233 (2013)

    Article  CAS  PubMed  Google Scholar 

  63. Loh, K.P., Bao, Q., Ang, P.K., Yang, J.: The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010)

    Article  CAS  Google Scholar 

  64. Omar, G., Salim, M., Mizah, B., Kamarolzaman, A., Nadlene, R.: Electronic applications of functionalized graphene nanocomposites. In: Jawaid, M., Bouhfid, R., Qaiss, A.K. (eds.) Micro and nano technologies, functionalized graphene nanocomposites and their derivatives, pp. 245–263. Elsevier, Amsterdam (2019)

    Chapter  Google Scholar 

  65. Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H., Lee, J.H.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061–1105 (2012)

    Article  CAS  Google Scholar 

  66. Hangtian, Z., Ya-Xiong, A., Minjie, S., Ziqi, L., Nianting, C., Cheng, Y., Peng, X.: Porous N-doped carbon/MnO2 nanoneedles for high performance ionic liquid-based supercapacitors. Mater. Lett. (2021). https://doi.org/10.1016/j.matlet.2021.129837

    Article  Google Scholar 

  67. Heng, W., Meng, W., Yongbing, T.: A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2017.12.022

    Article  Google Scholar 

  68. Zhang, X., Tang, Y., Zhang, F., Lee, C.S.: A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016)

    Article  Google Scholar 

  69. Ji, B., Zhang, F., Song, X., Tang, Y.: A novel potassium-ion-based dual-ion battery. Adv. Mater. 29, 1700519 (2017)

    Article  Google Scholar 

  70. Wang, M., Jiang, C., Zhang, S., Song, X., Tang, Y., Cheng, H.M.: Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018)

    Article  CAS  PubMed  Google Scholar 

  71. Zhao, N., Deng, L., Luo, D., Zhang, P.: One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Appl. Surf. Sci. 526, 146696 (2020)

    Article  CAS  Google Scholar 

  72. Li, X., Sheng, X., Guo, Y., Lu, X., Wu, H., Chen, Y., Zhang, L., Gu, J.: Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J. Mater. Sci. Technol. 86, 171–179 (2021)

    Article  CAS  Google Scholar 

  73. Wang, Q.: Hierarchical porous nitrogen, oxygen, and phosphorus ternary doped hollow biomass carbon spheres for high-speed and long-life potassium storage. Carbon Energy (2021). https://doi.org/10.1002/cey2.157

    Article  Google Scholar 

  74. Economopoulos, S.P., Rotas, G., Miyata, Y., Shinohara, H., Tagmatarchis, N.: Exfoliation and chemical modification using microwave irradiation affording highly functionalized graphene. ACS Nano 4, 7499–7507 (2010)

    Article  CAS  PubMed  Google Scholar 

  75. Choi, E.-K., Jeon, I.-Y., Bae, S.-Y., Lee, H.-J., Shin, H.S., Dai, L., Baek, J.-B.: High-yield exfoliation of three-dimensional graphite into two-dimensional graphene-like sheets. Chem. Commun. 46, 6320–6322 (2010)

    Article  CAS  Google Scholar 

  76. Yuan, C., Chen, W., Yan, L.: Amino-grafted graphene as a stable and metal-free solid basic catalyst. J. Mater. Chem. 22, 7456–7460 (2012)

    Article  CAS  Google Scholar 

  77. Liu, L.-H., Lerner, M.M., Yan, M.: Derivitization of pristine graphene with well-defined chemical functionalities. Nano Lett. 10, 3754–3756 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, L.-H., Yan, M.: Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis. Acc. Chem. Res. 43, 1434–1443 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Strom, T.A., Dillon, E.P., Hamilton, C.E., Barron, A.R.: Nitrene addition to exfoliated graphene: a one-step route to highly functionalized graphene. Chem. Commun. 46, 4097–4099 (2010)

    Article  CAS  Google Scholar 

  80. Koehler, F.M., Jacobsen, A., Ensslin, K., Stampfer, C., Stark, W.J.: Selective chemical modification of graphene surfaces: distinction between single- and bilayer graphene. Small 6, 1125–1130 (2010)

    Article  CAS  PubMed  Google Scholar 

  81. Liu, H., Ryu, S., Chen, Z., Steigerwald, M.L., Nuckolls, C., Brus, L.E.: Photochemical reactivity of graphene. J. Am. Chem. Soc. 131, 17099–17101 (2009)

    Article  CAS  PubMed  Google Scholar 

  82. Ponnamma, D., Sadasivuni, K.K.: Graphene/polymer nanocomposites: role in electronics. In: Sadasivuni, K.K., Ponnamma, D., Kim, J., Thomas, S. (eds.) Graphene-based polymer nanocomposites in electronics, pp. 1–24. Springer, Switzerland (2015)

    Google Scholar 

  83. Raji, M., Zari, N., Qaiss, A.K., Bouhfid, R.: Chemical preparation and functionalization techniques of graphene and graphene oxide. In: Jawaid, M., Bouhfid, R., Qaiss, A.K. (eds.) Micro and nano technologies, functionalized graphene nanocomposites and their derivatives, pp. 1–20. Elsevier, Amsterdam (2019)

    Google Scholar 

  84. Ren, H., Cunha, E., Sun, Q., Li, Z., Kinloch, I.A., Young, R.J., Fan, Z.: Surface functionality analysis by Boehm titration of graphene nanoplatelets functionalized via a solvent-free cycloaddition reaction. Nanoscale Adv. 1, 1432–1441 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Servant, A., Bianco, A., Prato, M., Kostarelos, K.: Graphene for multi-functional synthetic biology: the last ‘zeitgeist’in nanomedicine. Bioorganic Med. Chem. Lett. 24, 1638–1649 (2014)

    Article  CAS  Google Scholar 

  86. Tejado, A., Pena, C., Labidi, J., Echeverria, J., Mondragon, I.: Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour. Technol. 98, 1655–1663 (2007)

    Article  CAS  PubMed  Google Scholar 

  87. Chua, C.K., Pumera, M.: Friedel-Crafts acylation on graphene. Chem. Asian J. 7, 1009–1012 (2012)

    Article  CAS  PubMed  Google Scholar 

  88. Kuila, T., Khanra, P., Kim, N.H., Choi, S.K., Yun, H.J., Lee, H.L.: One-step electrochemical synthesis of 6-amino-4-hydroxy-2-napthalene-sulfonic acid functionalized graphene for green energy storage electrode materials. Nanotechnology 24, 365706 (2013)

    Article  PubMed  Google Scholar 

  89. Park, J., Yan, M.: Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 46, 181–189 (2012)

    Article  PubMed  Google Scholar 

  90. Choi, J., Kim, K.-J., Kim, B., Lee, H., Kim, S.: Covalent functionalization of epitaxial graphene by azidotrimethylsilane. J. Phys. Chem. C 113, 9433–9435 (2009)

    Article  CAS  Google Scholar 

  91. Zhong, X., Jin, J., Li, S., Niu, Z., Hu, W., Li, R., Ma, J.: Aryne cycloaddition: highly efficient chemical modification of graphene. Chem. Commun. 46, 7340–7342 (2010)

    Article  CAS  Google Scholar 

  92. Georgakilas, V., Bourlinos, A.B., Zboril, R., Steriotis, T.A., Dallas, P., Stubos, A.K., Trapalis, C.: Organic functionalisation of graphenes. Chem. Commun. 46, 1766–1768 (2010)

    Article  CAS  Google Scholar 

  93. Quintana, M., Spyrou, K., Grzelczak, M., Browne, W.R., Rudolf, P., Prato, M.: Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano 4, 3527–3533 (2010)

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, X., Hou, L., Cnossen, A., Coleman, A.C., Ivashenko, O., Rudolf, P., van Wees, B.J., Browne, W.R., Feringa, B.L.: One-pot functionalization of graphene with porphyrin through cycloaddition reactions. Chem. Eur. J. 17, 8957–8964 (2011)

    Article  CAS  PubMed  Google Scholar 

  95. Sarkar, S., Bekyarova, E., Niyogi, S., Haddon, R.C.: Diels-Alder chemistry of graphite and graphene: graphene as diene and dienophile. J. Am. Chem. Soc. 133, 3324–3327 (2011)

    Article  CAS  PubMed  Google Scholar 

  96. Sarkar, S., Bekyarova, E., Haddon, R.C.: Chemistry at the Dirac point: Diels-Alder reactivity of graphene. Acc. Chem. Res. 45, 673–682 (2012)

    Article  CAS  PubMed  Google Scholar 

  97. Smith, M.B.: March’s advanced organic chemistry: reactions, mechanisms, and structure, 8th edn. Wiley, New Jesey (2019)

    Google Scholar 

  98. Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.-F., Tour, J.M.: Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008)

    Article  CAS  PubMed  Google Scholar 

  99. Bekyarova, E., Itkis, M.E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W.A., Haddon, R.C.: Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J. Am. Chem. Soc. 131, 1336–1337 (2009)

    Article  CAS  PubMed  Google Scholar 

  100. Sinitskii, A., Dimiev, A., Corley, D.A., Fursina, A.A., Kosynkin, D.V., Tour, J.M.: Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4, 1949–1954 (2010)

    Article  CAS  PubMed  Google Scholar 

  101. Huang, P., Zhu, H., Jing, L., Zhao, Y., Gao, X.: Graphene covalently binding aryl groups: conductivity increases rather than decreases. ACS Nano 5, 7945–7949 (2011)

    Article  CAS  PubMed  Google Scholar 

  102. Ma, X., Li, F., Wang, Y., Hu, A.: Functionalization of pristine graphene with conjugated polymers through diradical addition and propagation. Chem. Asian J. 7, 2547–2550 (2012)

    Article  CAS  PubMed  Google Scholar 

  103. Qi, X., Hu, H., Yang, Y., Piao, Y.: Graphite nanoparticle as nanoquencher for 17β-estradiol detection using shortened aptamer sequence. Analyst 43, 4163–4170 (2018)

    Article  Google Scholar 

  104. Yang, L., Wang, G., Liu, Y., Wang, M.: Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides. Talanta 113, 135–141 (2013)

    Article  CAS  PubMed  Google Scholar 

  105. Zheng, D., Hu, H., Liu, X., Hu, S.: Application of graphene in electrochemical sensing. Curr. Opin. Colloid Interface Sci. 20, 383–405 (2015)

    Article  CAS  Google Scholar 

  106. Ziółkowski, R., Górski, Ł, Malinowska, E.: Carboxylated graphene as a sensing material for electrochemical uranyl ion detection. Sens. Actuators B 38, 540–547 (2017)

    Article  Google Scholar 

  107. Maio, A., Gammino, M., Gulino, E.F., Megna, B., Fara, P., Scaffaro, R.: Rapid one-step fabrication of graphene oxide-decorated polycaprolactone three-dimensional templates for water treatment. ACS Appl. Polym. Mater. 2, 4993–5005 (2020)

    Article  CAS  Google Scholar 

  108. Compton, O.C., Nguyen, S.B.T.: Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711–723 (2010)

    Article  CAS  PubMed  Google Scholar 

  109. Kuo, C.-Y., Wu, C.-H., Wu, J.-Y.: Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. J. Colloid Interface Sci. 327, 308–315 (2008)

    Article  CAS  PubMed  Google Scholar 

  110. Atieh, M.A., Bakather, O.Y., Tawabini, B.S., Bukhari, A.A., Khaled, M., Alharthi, M., Fettouhi, M., Abuilaiwi, F.A.: Removal of chromium (III) from water by using modified and nonmodified carbon nanotubes. J. Nanomater. 2010, 232378 (2010)

    Article  Google Scholar 

  111. Fraga, T.J., Carvalho, M.N., Ghislandi, M.G., da Motta Sobrinho, M.A.: Functionalized graphene-based materials as innovative adsorbents of organic pollutants: a concise overview. Braz. J. Chem. Eng. (2019). https://doi.org/10.1590/0104-6632.20190361s20180283

    Article  Google Scholar 

  112. Chavez-Sumarriva, I., Van Steenberge, P.H., D’hooge, D.R.: New insights in the treatment of waste water with graphene: dual-site adsorption by sodium dodecylbenzenesulfonate. Ind. Eng. Chem. Res. 55, 9387–9396 (2016)

    Article  CAS  Google Scholar 

  113. Fan, Z., Ji, P.P., Zhang, J., Segets, D., Chen, D.R., Chen, R.C.: Wavelet neural network modeling for the retention efficiency of sub-15 nm nanoparticles in ultrafiltration under small particle to pore diameter ratio. J. Membr. Sci. 635, 119503 (2021)

    Article  CAS  Google Scholar 

  114. Bhardiya, S.R., Asati, A., Sheshma, H., Rai, A., Rai, K.V., Singh, M.: A novel bioconjugated reduced graphene oxide-based nanocomposite for sensitive electrochemical detection of cadmium in water. Sens. Actuators B Chem. 328, 129019 (2021)

    Article  CAS  Google Scholar 

  115. Sadeghi, M.H., Tofighy, M.A., Mohammadi, T.: One-dimensional graphene for efficient aqueous heavy metal adsorption: Rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs). Chemosphere 253, 126647 (2020)

    Article  CAS  PubMed  Google Scholar 

  116. Ali, I., Mbianda, X., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan, E., Tkachev, A., Grachev, V.: Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019)

    Article  CAS  PubMed  Google Scholar 

  117. Hur, J., Shin, J., Yoo, J., Seo, Y.-S.: Competitive adsorption of metals onto magnetic graphene oxide: comparison with other carbonaceous adsorbents. Sci. World J. 2015, 836287 (2015)

    Article  Google Scholar 

  118. Pan, N., Li, L., Ding, J., Wang, R., Jin, Y., Xia, C.: A Schiff base/quaternary ammonium salt bifunctional graphene oxide as an efficient adsorbent for removal of Th (IV)/U (VI). J. Colloid. Interface Sci. 508, 303–312 (2017)

    Article  CAS  PubMed  Google Scholar 

  119. Chen, R., Cheng, Y., Wang, P., Wang, Q., Wan, S., Huang, S., Su, R., Song, Y., Wang, Y.: Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers. Sci. Total Environ. 756, 143871 (2020)

    Article  PubMed  Google Scholar 

  120. Chen, R., Cheng, Y., Wang, P., Wang, Y., Wang, Y., Yang, Z., Tang, C., Xiang, S., Luo, S., Huang, S., Su, C.: Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions. Chem. Eng. J. 421, 129682 (2021)

    Article  CAS  Google Scholar 

  121. Zhang, K., Qiu, L., Tao, J., Zhong, X., Lin, Z., Wang, R., Liu, Z.: Recovery of gallium from leach solutions of zinc refinery residues by stepwise solvent extraction with N235 and Cyanex 272. Hydrometallurgy 205, 105722 (2021)

    Article  CAS  Google Scholar 

  122. Liu, C., Chen, X., Zong, B., Mao, S.: Recent advances in sensitive and rapid mercury determination with graphene-based sensors. J. Mater. Chem. A 7, 6616–6630 (2019)

    Article  CAS  Google Scholar 

  123. Varmira, K., Saed-Mocheshi, M., Jalalvand, A.R.: Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: a comprehensive review. Sens. Bio-Sens Res. 15, 17–33 (2017)

    Article  Google Scholar 

  124. Song, N., Gao, X., Ma, Z., Wang, X., Wei, Y., Gao, C.: A review of graphene-based separation membrane: materials, characteristics, preparation and applications. Desalination 437, 59–72 (2018)

    Article  CAS  Google Scholar 

  125. Berry, V.: Impermeability of graphene and its applications. Carbon 62, 1–10 (2013)

    Article  CAS  Google Scholar 

  126. Fischbein, M.D., Drndić, M.: Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 93, 113107 (2008)

    Article  Google Scholar 

  127. Cohen-Tanugi, D., Grossman, J.C.: Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012)

    Article  CAS  PubMed  Google Scholar 

  128. Fouladivanda, M., Karimi-Sabet, J., Abbasi, F., Moosavian, M.A.: Step-by-step improvement of mixed-matrix nanofiber membrane with functionalized graphene oxide for desalination via air-gap membrane distillation. Sep. Purif. Technol. 256, 117809 (2021)

    Article  CAS  Google Scholar 

  129. Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S., Mahurin, S.M.: Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015)

    Article  CAS  PubMed  Google Scholar 

  130. Yeh, T.F., Syu, J.M., Cheng, C., Chang, T.H., Teng, H.: Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 20, 2255–2262 (2010)

    Article  CAS  Google Scholar 

  131. Kuang, Y., Shang, J., Zhu, T.: Photoactivated graphene oxide to enhance photocatalytic reduction of CO2. ACS Appl. Mater. Interfaces 12, 3580–3591 (2019)

    Article  Google Scholar 

  132. Yamamoto, S., Takeuchi, K., Hamamoto, Y., et al.: Enhancement of CO2 adsorption on oxygen-functionalized epitaxial graphene surface under near-ambient conditions. Phys. Chem. Chem. Phys. 20, 19532–19538 (2018)

    Article  CAS  PubMed  Google Scholar 

  133. Reddy, Y.V.M., Sravani, B., Luczak, T., et al.: An ultra-sensitive rifampicin electrochemical sensor based on titanium nanoparticles (TiO2) anchored reduced graphene oxide modified glassy carbon electrode. Colloids Surf. A Physicochem. Eng. Asp. 608, 125533 (2021)

    Article  Google Scholar 

  134. Wu, J., Wei, Y., Ding, H., et al.: Green synthesis of 3D chemically functionalized graphene hydrogel for high-performance NH3 and NO2 detection at room temperature. ACS Appl. Mater. Interfaces 12, 20623–20632 (2020)

    Article  CAS  PubMed  Google Scholar 

  135. Chen, Y., Yu, L., Feng, D., Zhuo, M., Zhang, M., Zhang, E., Xu, Z., Li, Q., Wang, T.: Superior ethanol-sensing properties based on Ni-doped SnO2 p–n heterojunction hollow spheres. Sens. Actuators B Chem. 166, 61–67 (2012)

    Article  Google Scholar 

  136. Wang, L., Deng, J., Fei, T., Zhang, T.: Template-free synthesized hollow NiO-SnO2 nanospheres with high gas-sensing performance. Sens. Actuators B Chem. 164, 90–95 (2012)

    Article  CAS  Google Scholar 

  137. Ghule, B.G., Shinde, N.M., Raut, S.D., et al.: Porous metal-graphene oxide nanocomposite sensors with high ammonia detectability. J. Colloid Interface Sci. 589, 401–410 (2021)

    Article  CAS  PubMed  Google Scholar 

  138. Sagadevan, S., Shahid, M.M., Yiqiang, Z., et al.: Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnol. Rev. (2021). https://doi.org/10.1515/ntrev-2021-0043)

    Article  Google Scholar 

  139. Joshi, S., Siddiqui, R., Sharma, P., Kumar, R., Verma, G., Saini, A.: Green synthesis of peptide functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-66230-3

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sambandam, S., Nallamuthu, P., Lakshmanan Saraswathi, J.: A green approach for the development of functionalized graphene and cardanol-based polybenzoxazine nanocomposite. Polym. Compos. (2021). https://doi.org/10.1002/pc.26150

    Article  Google Scholar 

  141. Wang, Y.Z., Xue, F.G., Hai, H.L., Jiao, Z., Xing, Z.: Green fabrication of functionalized graphene via one-step method and its reinforcement for polyamide 66 fibers. Mater. Chem. Phys. 240, 122288 (2020)

    Article  Google Scholar 

  142. Jia, P.P., Sun, T., Junaid, M., Yang, L., Ma, Y.B., Cui, Z.S., Pei, D.S.: Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environ. Pollut. 247, 595–606 (2019)

    Article  CAS  PubMed  Google Scholar 

  143. Alizadeh, N., Salimi, A., Hallaj, R., Fathi, F., Soleimani, F.: CuO/ WO3 nanoparticles decorated graphene oxide nanosheets with enhanced peroxidase-like activity for electrochemical cancer cell detection and targeted therapeutics. Mater. Sci. Eng. C (2019). https://doi.org/10.1016/j.msec.2019.02.048

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad for financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ali Raza.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabbir, M., Raza, Z.A., Shah, T.H. et al. Recent progress in graphenes: synthesis, covalent functionalization and environmental applications. J Nanostruct Chem 12, 1033–1051 (2022). https://doi.org/10.1007/s40097-021-00467-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00467-w

Keywords

Navigation