Skip to main content
Log in

Novel synthesis of amorphous CP@HfO2 nanomaterials for high-performance electrochemical sensing of 2-naphthol

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Present research, for the first time, reports a cetylpyridinium (CP)-capped hafnia (HfO2)-based novel nanomaterials (NMs) for efficient electrochemical sensing of 2-naphthol (2-NPT)—a noxious, mutagenic, and carcinogenic pollutant. A facile two-step hydrothermal approach was optimized to synthesise amorphous nanospheres of CP@HfO2 NMs (18–25 nm). The results of spectroscopic and electrochemical studies confirmed the availability of electron-rich and surface-active sites in CP@HfO2 NMs, which provided better chelating centres improving the stability of NMs and allowing selective detection of 2-NPT. For the sensing application, a CP@HfO2 NMs film was grown onto a gold (Au) electrode and electrochemical sensing was performed as a function of varied 2-NPT concentration using differential pulse voltammetry (DPV). Due to facile electron transport, the CP@HfO2-NMs/Au sensor exhibited a sensitivity of 1.62 µA µM−1 cm−2, a low limit of detection (LOD) of 133.92 nM, and a wide linear dynamic range (LDR) from 2.5 to 100 µM. The interference study evinced good selectivity and the propounded approach was successfully practiced for the detection of 2-NPT in environmental water samples. The outcomes of this research suggest that the CP@HfO2-NMs/Au system is an effective analytical tool for selective 2-NPT detection, which is essential for environmental monitoring and quality assurance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Igwe, J.C., Ukaogo, P.O.: Environmental effects of polycyclic aromatic hydrocarbons. J. Nat. Sci. Res. 5(7), 117–132 (2015)

    Google Scholar 

  2. Korashy, H.M., El-Kadi, A.O.: The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metab. Rev. 38(3), 411–450 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Croera, C., Ferrario, D., Gribaldo, L.: In vitro toxicity of naphthalene, 1-naphthol, 2-naphthol and 1, 4-naphthoquinone on human CFU-GM from female and male cord blood donors. Toxicol. In Vitro. 22(6), 1555–1561 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Niwa, S.I., Eswaramoorthy, M., Nair, J., Raj, A., Itoh, N., Shoji, H., Namba, T., Mizukami, F.: A one-step conversion of benzene to phenol with a palladium membrane. Science 295(5552), 105–107 (2002)

    Article  CAS  Google Scholar 

  5. Zollinger, H.: Color chemistry: syntheses, properties, and applications of organic dyes and pigments. John Wiley & Sons, New Jersey (2003)

    Google Scholar 

  6. Kuhr, R.J., Dorough, H.W.: Carbamate insecticides: chemistry, biochemistry, and toxicology. CRC Press Inc, Florida (1976)

    Google Scholar 

  7. Karinen, J.F., Lamberton, J.G., Stewart, N.E., Terriere, L.C.: Marine decomposition: persistence of carbaryl in the marine estuarine environment. Chemical and biological stability in aquarium systems. J. Agric. Food Chem. 15(1), 148–156 (1967)

    Article  CAS  Google Scholar 

  8. Li, J., Li, J., Feng, H., Zhang, Y., Jiang, J., Feng, Y., Chen, M., Qian, D.: A facile one-step in situ synthesis of copper nanostructures/graphene oxide as an efficient electrocatalyst for 2-naphthol sensing application. Electrochim. Acta 153, 352–360 (2015)

    Article  CAS  Google Scholar 

  9. Zhou, C., Wang, Q.E., Zhuang, H.S.: Simultaneous determination of 1-naphthol and 2-naphthol in water by spectrofluorimetry. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 28(11), 2628–2632 (2008)

    CAS  PubMed  Google Scholar 

  10. Lim, H.H., Shin, H.S.: Simultaneous determination of 2-naphthol and 1-hydroxypyrene in fish and shellfish contaminated with crude oil by gas chromatography–mass spectrometry. Food Chem. 138(2–3), 791–796 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. Ohyama, K., Kishikawa, N., Matayoshi, K., Adutwum, L.A., Wada, M., Nakashima, K., Kuroda, N.: Sensitive determination of 1-and 2-naphthol in human plasma by HPLC-fluorescence detection with 4-(4, 5-diphenyl-1H-imidazol-2-yl) benzoyl chloride as a labeling reagent. J. Sep. Sci. 32(13), 2218–2222 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. Yuan, Y.K., Xiao, X.L., Wang, Y.S., Xue, J.H., Li, G.R., Kang, R.H., Zhang, J.Q., Shi, L.F.: Quartz crystal microbalance with β-cyclodextrin/TiO2 composite films coupled with chemometrics for the simultaneous determination of urinary 1-and 2-naphthol. Sens. Actuators B Chem. 145(1), 348–354 (2010)

    Article  CAS  Google Scholar 

  13. Rao, L., Zhou, P., Liu, P., Lu, X., Duan, X., Wen, Y., Zhu, Y., Xu, J.: Green preparation of amorphous molybdenum sulfide nanocomposite with biochar microsphere and its voltametric sensing platform for smart analysis of baicalin. J. Electroanal. Chem. 898, 115591 (2021)

    Article  CAS  Google Scholar 

  14. Yi, Y., Wu, S., Luo, H., He, L., Yang, Y., Xue, T., Xu, J., Wen, Y., Wang, P.: Soft template assisted hydrothermal synthesis of phosphorus doped porous carbon spheres with tunable microstructure as electrochemical nanozyme sensor for distinguishable detection of two flavonoids coupled with derivative voltammetry. J. Electroanal. Chem. 897, 115563 (2021)

    Article  CAS  Google Scholar 

  15. Ding, Y., Guo, X., Du, B., Hu, X., Yang, X., He, Y., Zhou, Y., Zang, Z.: Low-operating temperature ammonia sensor based on Cu2O nanoparticles decorated with p-type MoS2 nanosheets. J. Mater. Chem. 9(14), 4838–4846 (2021)

    CAS  Google Scholar 

  16. Solanki, P.R., Kaushik, A., Agrawal, V.V., Malhotra, B.D.: Nanostructured metal oxide-based biosensors. NPG Asia Mater. 3(1), 17–24 (2011)

    Article  Google Scholar 

  17. Fernandez-Garcia, M., Rodgriguez, J.: Metal oxide nanoparticles. Brookhaven National Lab (BNL), Upton, NY (2007)

    Google Scholar 

  18. Cox, P.A.: Transition metal oxides: an introduction to their electronic structure and properties, vol. 27, pp. 1–234. Oxford University Press, Oxford (2010)

    Google Scholar 

  19. Wang, C., Yin, L., Zhang, L., Xiang, D., Gao, R.: Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ortiz-Dosal, L.C., Angeles-Robles, G., Kolosovas-Machuca, E.S.: Use of hafnium (IV) oxide in biosensors. J. Immunoassay Immunochem. 39(5), 471–484 (2018)

    Article  CAS  PubMed  Google Scholar 

  21. Durrani, S.M.A.: CO-sensing properties of hafnium oxide thin films prepared by electron beam evaporation. Sens. Actuators B Chem. 120(2), 700–705 (2007)

    Article  CAS  Google Scholar 

  22. Liang, F.X., Gao, Y., Xie, C., Tong, X.W., Li, Z.J., Luo, L.B.: Recent advances in the fabrication of graphene–ZnO heterojunctions for optoelectronic device applications. J. Mater. Chem. C 6(15), 3815–3833 (2018)

    Article  CAS  Google Scholar 

  23. Schindler, M., Kim, S.K., Hwang, C.S., Schindler, C., Offenhausser, A., Ingebrandt, S.: Novel post-process for the passivation of a CMOS biosensor. Phys. Stat. Solidi. Rapid Res. Lett. 2(1), 4–6 (2008)

    Article  CAS  Google Scholar 

  24. Kumar, S., Kumar, S., Tiwari, S., Augustine, S., Srivastava, S., Yadav, B.K., Malhotra, B.D.: Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection. Sens. Actuators B Chem. 235, 1–10 (2016)

    Article  CAS  Google Scholar 

  25. Fahrenkopf, N.M., Rice, P.Z., Bergkvist, M., Deskins, N.A., Cady, N.C.: Immobilization mechanisms of deoxyribonucleic acid (DNA) to hafnium dioxide (HfO2) surfaces for biosensing applications. ACS Appl. Mater. Interfaces 4(10), 5360–5368 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. Teker, T., Aslanoglu, M.: A hafnium oxide based voltammetric platform for the sensitive determination of octopamine. Electroanalysis 33(10), 2235–2242 (2021)

    Article  CAS  Google Scholar 

  27. Pataniya, P.M., Late, D., Sumesh, C.K.: Photosensitive WS2/ZnO nano-heterostructure-based electrocatalysts for hydrogen evolution reaction. ACS Appl. Energy Mater. 4(1), 755–762 (2021)

    Article  CAS  Google Scholar 

  28. Agnihotri, A.S., Varghese, A., Nidhin, M.: Transition metal oxides in electrochemical and bio sensing: a state-of-art review. Appl. Surf. Sci. Adv. 4, 100072 (2021)

    Article  Google Scholar 

  29. Lee, M., Zine, N., Baraket, A., Zabala, M., Campabadal, F., Caruso, R., Trivella, M.G., Jaffrezic-Renault, N., Errachid, A.: A novel biosensor based on hafnium oxide: application for early stage detection of human interleukin-10. Sens. Actuators B Chem. 175, 201–207 (2012)

    Article  CAS  Google Scholar 

  30. Shaban, S.M., Lee, J.Y., Kim, D.H.: Dual-surfactant-capped Ag nanoparticles as a highly selective and sensitive colorimetric sensor for citrate detection. ACS Omega 5(19), 10696–10703 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu, G., Gai, P., Yang, Y., Zhang, X., Chen, J.: Electrochemical sensor for naphthols based on gold nanoparticles/hollow nitrogen-doped carbon microsphere hybrids functionalized with SH-β-cyclodextrin. Anal. Chim. Acta. 723, 33–38 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Tsai, M.C., Chen, P.Y.: Electrochemical detection of 2-naphthol at a glassy carbon electrode modified with tosflex film. Electroanalysis 19(12), 1315–1321 (2007)

    Article  CAS  Google Scholar 

  33. Panizza, M., Cerisola, G.: Influence of anode material on the electrochemical oxidation of 2-naphthol: part 1. Cyclic voltammetry and potential step experiments. Electrochim. Acta. 48(23), 3491–3497 (2003)

    Article  CAS  Google Scholar 

  34. Panizza, M., Cerisola, G.: Influence of anode material on the electrochemical oxidation of 2-naphthol: Part 2. Bulk electrolysis experiments. Electrochim. Acta. 49(19), 3221–3226 (2004)

    Article  CAS  Google Scholar 

  35. Gattrell, M., Kirk, D.W.: A study of the oxidation of phenol at platinum and preoxidized platinum surfaces. J. Electrochem. Soc. 140(6), 1534 (1993)

    Article  CAS  Google Scholar 

  36. Shaban, S.M., Aiad, I., El-Sukkary, M.M., Soliman, E.A., El-Awady, M.Y.: One step green synthesis of hexagonal silver nanoparticles and their biological activity. J. Ind. Eng. Chem. 20(6), 4473–4481 (2014)

    Article  CAS  Google Scholar 

  37. Kaur, N., Kaur, G., Bhalla, A., Dhau, J.S., Chaudhary, G.R.: Metallosurfactant based Pd–Ni alloy nanoparticles as a proficient catalyst in the Mizoroki Heck coupling reaction. Green Chem. 20(7), 1506–1514 (2018)

    Article  CAS  Google Scholar 

  38. Kaur, G., Singh, P., Mehta, S.K., Kumar, S., Dilbaghi, N., Chaudhary, G.R.: A facile route for the synthesis of Co, Ni and Cu metallic nanoparticles with potential antimicrobial activity using novel metallosurfactants. Appl. Surf. Sci. 404, 254–262 (2017)

    Article  CAS  Google Scholar 

  39. Kanwar, R., Bhar, R., Mehta, S.K.: Designed meso-macroporous silica framework impregnated with copper oxide nanoparticles for enhanced catalytic performance. Chem. Cat. Chem. 10(9), 2087–2095 (2018)

    CAS  Google Scholar 

  40. Bhar, R., Kaur, G., Mehta, S.K.: Experimental validation of DNA interactions with nanoparticles derived from metal coupled amphiphiles. J. Biomol. Struct. Dyn. 36(14), 3614–3622 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. Neouze, M.A., Schubert, U.: Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh. Chem. Chem. Month. 139(3), 183–195 (2008)

    Article  CAS  Google Scholar 

  42. Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M.F., Kostopoulou, A., Oh, E., Susumu, K.: The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 119(8), 4819–4880 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. Varade, D., Joshi, T., Aswal, V.K., Goyal, P.S., Hassan, P.A., Bahadur, P.: Effect of salt on the micelles of cetyl pyridinium chloride. Colloids Surf. A Physicochem. Eng. Asp. 259(1–3), 95–101 (2005)

    Article  CAS  Google Scholar 

  44. Matovic, B., Pantic, J., Lukovic, J., Cebela, M., Dmitrovic, S., Mirkovic, M., Prekajski, M.: A novel reduction–oxidation synthetic route for hafnia. Ceram. Int. 42(1), 615–620 (2016)

    Article  CAS  Google Scholar 

  45. Kung, K.H.S., Hayes, K.F.: Fourier transform infrared spectroscopic study of the adsorption of cetyltrimethylammonium bromide and cetylpyridinium chloride on silica. Langmuir 9(1), 263–267 (1993)

    Article  CAS  Google Scholar 

  46. Yang, X., Zhang, Y., Hao, X., Song, Y., Liang, X., Liu, F., Liu, F., Sun, P., Gao, Y., Yan, X., Lu, G.: Nafion-based amperometric H2S sensor using Pt-Rh/C sensing electrode. Sens. Actuators B Chem. 273, 635–641 (2018)

    Article  CAS  Google Scholar 

  47. Chaubey, G.S., Yao, Y., Makongo, J.P., Sahoo, P., Misra, D., Poudeu, P.F., Wiley, J.B.: Microstructural and thermal investigations of HfO2 nanoparticles. RSC Adv. 2(24), 9207–9213 (2012)

    Article  CAS  Google Scholar 

  48. Ivanov, V.K., Baranchikov, A.E., Tretyakov, Y.D.: Crystallization of hydrous zirconia and hafnia during hydrothermal treatment. Russ. J. Inorg. Chem. 55(5), 665–669 (2010)

    Article  CAS  Google Scholar 

  49. Yoo, Y.B., Park, J.H., Lee, K.H., Lee, H.W., Song, K.M., Lee, S.J., Baik, H.K.: Solution-processed high-k HfO2 gate dielectric processed under softening temperature of polymer substrates. J. Mater. Chem. C. 1(8), 1651–1658 (2013)

    Article  CAS  Google Scholar 

  50. Bredar, A.R., Chown, A.L., Burton, A.R., Farnum, B.H.: Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater. 3(1), 66–98 (2020)

    Article  CAS  Google Scholar 

  51. Jayaraman, V., Bhavesh, G., Chinnathambi, S., Ganesan, S., Aruna, P.: Synthesis and characterization of hafnium oxide nanoparticles for bio-safety. Mater. Express 4(5), 375–383 (2014)

    Article  CAS  Google Scholar 

  52. Shen, Y., Jiang, J.C., Zeman, P., Simova, V., Vlcek, J., Meletis, E.I.: Microstructure evolution in amorphous Hf-B-Si-CN high temperature resistant coatings after annealing to 1500°C in air. Scient. Rep. 9(1), 1–11 (2019)

    Google Scholar 

  53. Ramadoss, A., Krishnamurthy, K., Kim, S.J.: Novel synthesis of hafnium oxide nanoparticles by precipitation method and its characterization. Mater. Res. Bull. 47, 2680–2684 (2012)

    Article  CAS  Google Scholar 

  54. Asadabad, M.A., Eskandari, M.J.: Electron diffraction. In: Janecek, M. (ed.) Modern electron microscopy in physical and life sciences. IntechOpen, London (2016)

    Google Scholar 

  55. Al-Jibouri, M.N., Hafidh, F.R., Rasheed, A.M.: Synthesis and characterization of some transition metal complexes with tridentate N3 donor Schiff base derived from 2-aminothiazole. Eur. Chem. Bull. 3(6), 559–562 (2014)

    Google Scholar 

  56. Crist, B.V.: XPS in industry—problems with binding energies in journals and binding energy databases. Electron Spectros. Relat. Phenomena 231, 75–87 (2019)

    Article  CAS  Google Scholar 

  57. Gorschinski, A., Khelashvili, G., Schild, D., Habicht, W., Brand, R., Ghafari, M., Bonnemann, H., Dinjus, E., Behrens, S.: A simple aminoalkyl siloxane-mediated route to functional magnetic metal nanoparticles and magnetic nanocomposites. J. Mater. Chem. 19(46), 8829–8838 (2009)

    Article  CAS  Google Scholar 

  58. Ali, M.A., Srivastava, S., Solanki, P.R., Reddy, V., Agrawal, V.V., Kim, C., John, R., Malhotra, B.D.: Highly efficient bienzyme functionalized nanocomposite-based microfluidics biosensor platform for biomedical application. Sci. Rep. 3(1), 1–9 (2013)

    Article  CAS  Google Scholar 

  59. Huang, X.Y., Chi, Z.T., Liu, J., Li, D.H., Sun, X.J., Yan, C., Wang, Y.C., Li, H., Wang, X.D., Xie, W.F.: Enhanced gas sensing performance based on p-NiS/n-In2O3 heterojunction nanocomposites. Sens. Actuators B Chem. 304, 127305 (2020)

    Article  CAS  Google Scholar 

  60. Wang, P., Wang, S.Z., Kang, Y.R., Sun, Z.S., Wang, X.D., Meng, Y., Hong, M.H., Xie, W.F.: Cauliflower-shaped Bi2O3–ZnO heterojunction with superior sensing performance towards ethanol. J. Alloys Compd. 854, 157152 (2021)

    Article  CAS  Google Scholar 

  61. Albrecht, T.: Electrochemical tunnelling sensors and their potential applications. Nat. Commun. 3(1), 1–10 (2012)

    Article  Google Scholar 

  62. Gao, Y., Li, Y., Zhao, X., Hu, J., Ju, Y.: First preparation of a triterpenoid-based supramolecular hydrogel in physiological phosphate buffered saline. RSC Adv. 5(123), 102097–102100 (2015)

    Article  CAS  Google Scholar 

  63. Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., Dempsey, J.L.: A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95(2), 197–206 (2018)

    Article  CAS  Google Scholar 

  64. Chakraborty, U., Bhanjana, G., Adam, J., Mishra, Y.K., Kaur, G., Chaudhary, G.R., Kaushik, A.: A flower-like ZnO–Ag2O nanocomposite for label and mediator free direct sensing of dinitrotoluene. RSC Adv. 10(46), 27764–27774 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jaksic, M.M., Johansen, B., Tunold, R.: Electrochemical behaviour of gold in acidic and alkaline solutions of heavy and regular water. Int. J. Hydrogen Energy 18(2), 91–110 (1993)

    Article  CAS  Google Scholar 

  66. Zhang, W., Bas, A.D., Ghali, E., Yeonuk, C.H.O.I.: Passive behaviour of gold in sulfuric acid medium. Trans. Nonferrous Met. Soc. 25(6), 2037–2046 (2015)

    Article  CAS  Google Scholar 

  67. Wu, J.J., Wang, W.T., Wang, M., Liu, H., Pan, H.C.: Electrochemical behavior and direct quantitative determination of tanshinone II A in micro-emulsion. Int. J. Electrochem. Sci. 11, 5165–5179 (2016)

    Article  CAS  Google Scholar 

  68. Amire, S.A., Burrows, H.D.: Fluorescence and absorption spectral study of the interaction between cetylpyridinium and 2-naphtholate ions in aqueous solution. J. Chem. Soc. Faraday Trans. 78(7), 2033–2040 (1982)

    Article  CAS  Google Scholar 

  69. Nicholson, R.S., Shain, I.: Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem. 36(4), 706–723 (1964)

    Article  CAS  Google Scholar 

  70. Bard, A.J., Faulkner, L.R.: Fundamentals and applications. Electrochem. Methods 2(482), 580–632 (2001)

    Google Scholar 

  71. Zhang, Y., Zhuang, H.: Poly (acridine orange) film modified electrode for the determination 1-naphthol in the presence of 2-naphthol. Electrochim. Acta. 54(28), 7364–7369 (2009)

    Article  CAS  Google Scholar 

  72. Cai, S.X., Song, X.Q., Chi, Z.T., Fu, Y.Q., Fang, Z.T., Kang, Y.R., Yang, X.X., Qin, J.F., Xie, W.F.: Rational design of Bi-doped rGO/Co3O4 nanohybrids for ethanol sensing. Sens. Actuators B Chem. 343, 130118 (2021)

    Article  CAS  Google Scholar 

  73. Shrivastava, A., Gupta, V.B.: Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Scientists 2(1), 21–25 (2011)

    Article  Google Scholar 

  74. Chakraborty, U., Bhanjana, G., Kaur, N., Sharma, R., Kaur, G., Kaushik, A., Chaudhary, G.R.: Microwave-assisted assembly of Ag2O-ZnO composite nanocones for electrochemical detection of 4-nitrophenol and assessment of their photocatalytic activity towards degradation of 4-Nitrophenol and Methylene blue dye. J. Hazard. Mater. 416, 125771 (2021)

    Article  CAS  PubMed  Google Scholar 

  75. Chiorcea-Paquim, A.M., Enache, T.A., De Souza Gil, E., Oliveira-Brett, A.M.: Natural phenolic antioxidants electrochemistry: towards a new food science methodology. Comprehensive Rev. Food Sci. Food Saf. 19(4), 1680–1726 (2020)

    Article  CAS  Google Scholar 

  76. Negash, N., Alemu, H., Tessema, M.: Electrochemical characterization and determination of phenol and chlorophenols by voltammetry at single wall carbon nanotube/poly (3, 4-ethylenedioxythiophene) modified screen printed carbon electrode. Int. Scholar. Res. Notices 2015, 1–11 (2015)

    Article  Google Scholar 

  77. Huang, X., Zhao, G., Liu, M., Li, F., Qiao, J., Zhao, S.: Highly sensitive electrochemical determination of 1-naphthol based on high-index facet SnO2 modified electrode. Electrochim. Acta 83, 478–484 (2012)

    Article  CAS  Google Scholar 

  78. Hercules, D.M., Rogers, L.B.: Fluorometric determination of 1-and 2-naphthol in mixtures. Anal. Chem. 30(1), 96–99 (1958)

    Article  CAS  Google Scholar 

  79. Zhou, Q., Lei, M., Li, J., Zhao, K., Liu, Y.: Determination of 1-naphthol and 2-naphthol from environmental waters by magnetic solid phase extraction with Fe@ MgAl-layered double hydroxides nanoparticles as the adsorbents prior to high performance liquid chromatography. J. Chromatogr. A 1441, 1–7 (2016)

    Article  CAS  PubMed  Google Scholar 

  80. Li, J.J., Li, J.Y., Nian, Z.Q.: Electrochemical behavior of 2-naphthol at polymeric N, N-dimethylaniline/multiwalled carbon nanotubes modified electrode. J. Anal. Sci. 4, 5369–5381 (2012)

    Google Scholar 

Download references

Acknowledgements

G. R. Chaudhary and Ajeet Kaushik are very thankful to the support of UGC, India, an INDO-US, 21st Century Knowledge Initiative Project [File No. 194-2/2016]. Moondeep Chauhan gratefully acknowledges the BIRAC (Biotechnology Industry Research Assistance Council) for financial support. Gurpreet Kaur is grateful to the DST in favour of Inspire Faculty award (F. No. IFA-12-CH-41) and Mehar Singh is cordially acknowledge the financial support provided by Council of Scientific and Industrial Research (CSIR)-New Delhi, India, for financial support under CSIR (F. No. 09/135(0770)/2017-EMR-I) fellowship. Authors as well acknowledge the assistance of SAIF/CIL, Panjab University, Chandigarh, for provision instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gurpreet Kaur, Ajeet Kaushik or Ganga Ram Chaudhary.

Ethics declarations

Conflict of interest

No conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3183 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Chauhan, M., Mishra, Y.K. et al. Novel synthesis of amorphous CP@HfO2 nanomaterials for high-performance electrochemical sensing of 2-naphthol. J Nanostruct Chem 13, 423–438 (2023). https://doi.org/10.1007/s40097-021-00463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00463-0

Keywords

Navigation