Skip to main content

Advertisement

Log in

Design and construction of hollow nanocube NiMoO4 electrode with high performance for asymmetric supercapacitor

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

In this work, NiMoO4 hollow nanocubes were first successfully obtained via facile solvothermal and subsequent etching process. Assembling two-dimensional NiMoO4 nanosheets into the three-dimensional framework based on Cu2O nanocubes provided outstanding nanostructure stability and excellent electrochemical property. For example, the as-prepared hollow NiMoO4 nanocubes exhibited an outstanding capacitance of 1093 F g−1 at 1 A g−1. In addition, the supercapacitor is composed of hollow NiMoO4 nanocubes as positive electrode and N-rGO as negative electrode, which showed an outstanding energy density (44.01 Wh kg−1) at a power density of 769 W kg−1 in a voltage windows of 0–1.55 V, and even maintained an energy density (23.68 Wh kg−1) at a high power density (7.7 kW kg−1). Furthermore, the device delivered a promising long-term cyclic performance of 84.7% capacitance retention after 5000 charge–discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gu, Y., Fan, L.Q., Huang, J.-L., Geng, C.-L., Lin, J.-M., Huang, M.-L., et al.: N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J. Power Sources 425, 60–68 (2019)

    Article  CAS  Google Scholar 

  2. Qiao, X., Yun, S., Han, F., Zhang, Y., Arshad, A., Chidambaram, B., et al.: Honeycomb-like bio-based carbon framework decorated with ternary tantalum-based compounds as efficient and durable electrocatalysts for triiodide reduction reaction. Int. J. Energy Res. 44, 7630–7644 (2020)

    Article  CAS  Google Scholar 

  3. Fan, L.-Q., Tu, Q.-M., Geng, C.-L., Wang, Y.-L., Sun, S.-J., Huang, Y.-F., et al.: Improved redox-active ionic liquid-based ionogel electrolyte by introducing carbon nanotubes for application in all-solid-state supercapacitors. Int. J. Hydrogen Energy 45, 17131–17139 (2020)

    Article  CAS  Google Scholar 

  4. Liu, H., Chen, C.: Data processing strategies in wind energy forecasting models and applications: a comprehensive review. Appl. Energy 249, 392–408 (2019)

    Article  Google Scholar 

  5. Han, F., Yun, S., Shi, J., Zhang, Y., Si, Y., Wang, C., et al.: Efficient dual-function catalysts for triiodide reduction reaction and hydrogen evolution reaction using unique 3D network aloe waste-derived carbon-supported molybdenum-based bimetallic oxide nanohybrids. Appl. Catal. B. 273, 119004 (2020)

    Article  CAS  Google Scholar 

  6. Wang, X., Yun, S., Fang, W., Zhang, C., Liang, X., Lei, Z., et al.: Layer-stacking activated carbon derived from sunflower stalk as electrode materials for high-performance supercapacitors. ACS Sustain. Chem. Eng. 6, 11397–11407 (2018)

    Article  CAS  Google Scholar 

  7. Sajedi-Moghaddam, A., Rahmanian, E., Naseri, N.: Inkjet-printing technology for supercapacitor application: current state and perspectives. ACS Appl. Mater. Interfaces 12, 34487–34504 (2020)

    Article  CAS  Google Scholar 

  8. Wang, C., Yun, S., Fan, Q., Wang, Z., Zhang, Y., Han, F., et al.: A hybrid niobium-based oxide with bio-based porous carbon as an efficient electrocatalyst in photovoltaics: a general strategy for understanding the catalytic mechanism. J. Mater. Chem. A 7, 14864–14875 (2019)

    Article  CAS  Google Scholar 

  9. Zhao, B., Zhang, L., Zhang, Q., Chen, D., Cheng, Y., Deng, X., Chen, Y., Murphy, R., Xiong, X., Song, B., Wong, C.-P., Wang, M.-S., Liu, M.: Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater. 8, 1702247 (2018)

    Article  Google Scholar 

  10. Wang, Z., Yun, S., Wang, X., Wang, C., Si, Y., Zhang, Y., et al.: Aloe peel-derived honeycomb-like bio-based carbon with controllable morphology and its superior electrochemical properties for new energy devices. Ceram. Int. 45, 4208–4218 (2019)

    Article  CAS  Google Scholar 

  11. Abbas, Y., Yun, S., Javed, M.S., Chen, J., Tahir, M.F., Wang, Z., et al.: Anchoring 2D NiMoO4 nano-plates on flexible carbon cloth as a binder-free electrode for efficient energy storage devices. Ceram. Int. 46, 4470–4476 (2020)

    Article  CAS  Google Scholar 

  12. Yao, M., Zhao, X., Zhang, J., Tan, W., Luo, J., Dong, J., Zhang, Q.: Flexible all-solid-state supercapacitors of polyaniline nanowire arrays deposited on electrospun carbon nanofibers decorated with MOFs. Nanotechnology 30, 085404 (2019)

    Article  Google Scholar 

  13. Zhang, Q.-Z., Zhang, D., Miao, Z.-C., Zhang, X.-L., Chou, S.-L.: Research progress in MnO2-carbon based supercapacitor electrode materials. Small 14, 1702883 (2018)

    Article  Google Scholar 

  14. Hussain, S., Javed, M.S., Asim, S., Shaheen, A., Khan, A.J., Abbas, Y., et al.: Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 46, 6406–6412 (2020)

    Article  CAS  Google Scholar 

  15. Shinde, S.K., Jalak, M.B., Ghodake, G.S., Maile, N.C., Kumbhar, V.S., Lee, D.S., Fulari, V.J., Kim, D.-Y.: Chemically synthesized nanoflakes-like NiCo2S4 electrodes for high-performance supercapacitor application. Appl. Surf. Sci. 466, 822–829 (2019)

    Article  CAS  Google Scholar 

  16. Yan, M., Yao, Y., Wen, J., Long, L., Kong, M., Zhang, G., Liao, X., Yin, G., Huang, Z.: Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl. Mater. Interfaces. 8, 24525–24535 (2016)

    Article  CAS  Google Scholar 

  17. Liu, T., Liu, J., Zhang, L., Cheng, B., Yu, J.: Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor. J. Mater. Sci. Technol. 47, 113–121 (2020)

    Article  CAS  Google Scholar 

  18. Liu, B., Hou, J., Zhang, T., Xu, C., Liu, H.: A three-dimensional multilevel nanoporous NiCoO2/Ni hybrid for highly reversible electrochemical energy storage. J. Mater. Chem. A. 7, 16222–16230 (2019)

    Article  CAS  Google Scholar 

  19. Yun, S., Zhou, X., Zhang, Y., Wang, C., Hou, Y.: Tantalum-based bimetallic oxides deposited on spherical carbon of biological origin for use as counter electrodes in dye sensitized solar cells. Electrochim Acta. 309, 371–381 (2019)

    Article  CAS  Google Scholar 

  20. Javed, M.S., Shah, S.S.A., Najam, T., Siyal, S.H., Hussain, S., Saleem, M., et al.: Achieving high-energy density and superior cyclic stability in flexible and lightweight pseudocapacitor through synergic effects of binder-free CoGa2O4 2D-hexagonal nanoplates. Nano Energy 77, 105276 (2020)

    Article  CAS  Google Scholar 

  21. Yang, C., Yun, S., Shi, J., Sun, M., Zafar, N., Arshad, A., et al.: Tailoring the supercapacitive behaviors of Co/Zn-ZIF derived nanoporous carbon via incorporating transition metal species: a hybrid experimental-computational exploration. Chem. Eng. J. 419, 129636 (2021)

    Article  CAS  Google Scholar 

  22. Zhang, Y., Chang, C., Gao, H., Wang, S., Yan, J., Gao, K., Jia, X., Luo, H., Fang, H., Zhang, A., Wang, L.: High-performance supercapacitor electrodes based on NiMoO4 nanorods. J. Mater. Res. 34, 2435–2444 (2019)

    Article  CAS  Google Scholar 

  23. Neeraj, N.S., Mordina, B., Srivastava, A.K., Mukhopadhyay, K., Prasad, N.E.: Impact of process conditions on the electrochemical performances of NiMoO4 nanorods and activated carbon based asymmetric supercapacitor. Appl. Surf. Sci. 473, 807–819 (2019)

    Article  CAS  Google Scholar 

  24. Wang, X., Chen, Y., Fang, Y., Zhang, J., Gao, S., Lou, X.W.: Synthesis of cobalt sulfide multi-shelled nanoboxes with precisely controlled two to five shells for sodium-ion batteries. Angew. Chem. 131, 2701–2705 (2019)

    Article  Google Scholar 

  25. Fang, Y., Guan, B.Y., Luan, D., Wen, X.: Synthesis of CuS@CoS2 double-shelled nanoboxes with enhanced sodium storage properties. Angew. Chem. 131, 7821–7825 (2019)

    Article  Google Scholar 

  26. Guo, H., Liu, L., Li, T., Chen, W., Liu, J., Guo, Y., Guo, Y.: Accurate hierarchical control of hollow crossed NiCo2O4 nanocubes for superior lithium storage. Nanoscale 6, 5491–5497 (2014)

    Article  CAS  Google Scholar 

  27. Yang, F., Xu, K., Hu, J.: Hierarchical multicomponent electrode with NiMoO4 nanosheets coated on Co3O4 nanowire arrays for enhanced electrochemical properties. J. Alloys Compd. 781, 1127–1131 (2019)

    Article  CAS  Google Scholar 

  28. Cheng, D., Yang, Y., Xie, J., Fang, C., Zhang, G., Xiong, J.: Hierarchical NiCo2O4 @NiMoO4 core-shell hybrid nanowire/nanosheet arrays for high-performance pseudocapacitors. J. Mater. Chem. A. 3, 14348–14357 (2015)

    Article  CAS  Google Scholar 

  29. Xuan, X., Qian, M., Han, L., Wan, L., Li, Y., Lu, T., Pan, L., Niu, Y., Gong, S.: In-situ growth of hollow NiCo layered double hydroxide on carbon substrate for flexible supercapacitor. Electrochim Acta. 321, 134710 (2019)

    Article  CAS  Google Scholar 

  30. Huang, Y., Cui, F., Zhao, Y., Lian, J., Bao, J., Li, H.: Controlled growth of ultrathin NiMoO4 nanosheets on carbon nanofiber membrane as advanced electrodes for asymmetric supercapacitors. J. Alloys Compd. 753, 176–185 (2018)

    Article  CAS  Google Scholar 

  31. Javed, M.S., Lei, H., Wang, Z., Liu, B.-T., Cai, X., Mai, W.: 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 70, 104573 (2020)

    Article  CAS  Google Scholar 

  32. Chavan, H.S., Hou, B., Ahmed, A.T.A., Jo, Y., Cho, S., Kim, J., Pawar, S.M., Cha, S., Inamdar, A.I., Im, H., Kim, H.: Nanoflake NiMoO4 based smart supercapacitor for intelligent power balance monitoring. Sol. Energy Mater. Sol. Cells. 185, 166–173 (2018)

    Article  CAS  Google Scholar 

  33. Seevakan, K., Manikandan, A., Devendran, P., Shameem, A., Alagesan, T.: Microwave combustion synthesis, magneto-optical and electrochemical properties of NiMoO4 nanoparticles for supercapacitor application. Ceram. Int. 44, 13879–13887 (2018)

    Article  CAS  Google Scholar 

  34. Kumar, S., Saeed, G., Kim, N.H., Lee, J.H.: Hierarchical nanohoneycomb-like CoMoO4–MnO2 core-shell and Fe2O3 nanosheet arrays on 3D graphene foam with excellent supercapacitive performance. J. Mater. Chem. A 6, 7182–7193 (2018)

    Article  CAS  Google Scholar 

  35. Gao, M., Le, K., Xu, D., Wang, Z., Wang, F., Liu, W., Yu, H., Liu, J., Chen, C.: Controlled sulfidation towards achieving core-shell 1D-NiMoO4@2D-NiMoS4 architecture for high-performance asymmetric. J. Alloys Compd. 804, 27–34 (2019)

    Article  CAS  Google Scholar 

  36. He, T., Wang, S., Lu, F., Zhang, M., Zhang, X., Xu, L.: Controllable synthesis of hierarchical NiCo2S4@Ni3S2 core–shell nanotube arrays with excellent electrochemical performance for aqueous asymmetric supercapacitors. RSC Adv. 6, 97352–97362 (2016)

    Article  CAS  Google Scholar 

  37. Lin, J., Liang, H., Jia, H., Chen, S., Cai, Y., Qi, J., Cao, J., Fei, W., Feng, J.: Hierarchical CuCo2O4 @NiMoO4 core–shell hybrid arrays as a battery-like electrode for supercapacitors. Inorg. Chem. Front. 4, 1575–1581 (2017)

    Article  CAS  Google Scholar 

  38. Cai, D., Wang, D., Liu, B., Wang, L., Liu, Y., Li, H., Wang, Y., Li, Q., Wang, T.: Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Appl. Mater. Interfaces. 6, 5050–5055 (2014)

    Article  CAS  Google Scholar 

  39. Nti, F., Anang, D.A., Han, J.I.: Facilely synthesized NiMoO4/CoMoO4 nanorods as electrode material for high performance supercapacitor. J. Alloys Compd. 742, 342–350 (2018)

    Article  CAS  Google Scholar 

  40. Hu, X., Zhang, W., Liu, X., Mei, Y., Huang, Y.: Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 44, 2376–2404 (2015)

    Article  CAS  Google Scholar 

  41. Krishnan, S.G., Rahim, M.H.A., Jose, R.: Synthesis and characterization of MnCo2O4 cuboidal microcrystals as a high performance psuedocapacitor electrode. J. Alloys Compd. 656, 707–713 (2016)

    Article  CAS  Google Scholar 

  42. Thiagarajan, K., Balaji, D., Madhavan, J., Theerthagiri, J., Lee, S.J., Kwon, K.-Y., Choi, M.Y.: Cost-effective synthesis of efficient CoWO4/Ni nanocomposite electrode material for supercapacitor applications. Nanomaterials 10, 2195 (2020)

    Article  CAS  Google Scholar 

  43. Janardhanan, R., Thangavel, R., Kim, M., Lee, Y.S., Jang, J.-H.: Ultra-high energy density hybrid supercapacitors using MnO2/reduced graphene oxide hybrid nanoscrolls. Nanomaterials 10, 2049 (2020)

    Article  Google Scholar 

  44. Augustyn, V., Simon, P., Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014)

    Article  CAS  Google Scholar 

  45. Kumbhar, V.S., Nguyen, V.Q., Lee, Y.R., Lokhande, C.D., Kim, D.-H., Shim, J.-J.: Electrochemically growth-controlled honeycomb-like NiMoO4 nanoporous network on nickel foam and its applications in all-solid-state asymmetric supercapacitors. New J. Chem. 42, 14805–14816 (2018)

    Article  CAS  Google Scholar 

  46. Feng, X., Ning, J., Wang, D., Zhang, J., Xia, M., Wang, Y., Hao, Y.: Heterostructure arrays of NiMoO4 nanoflakes on N-doping of graphene for high-performance asymmetric supercapacitors. J. Alloys Compd. 816, 152625 (2020)

    Article  CAS  Google Scholar 

  47. Xu, R., Lin, J., Wu, J., Huang, M., Fan, L., Xu, Z., Song, Z.: A high-performance pseudocapacitive electrode material for supercapacitors based on the unique NiMoO4/NiO nanoflowers. Appl. Surf. Sci. 463, 721–731 (2019)

    Article  CAS  Google Scholar 

  48. Sharma, G.P., Pala, R.G.S., Sivakumar, S.: Ultrasmall NiMoO4 robust nanoclusters-active carbon composite for high performance extrinsic pseudocapacitor. Electrochim. Acta. 318, 607–616 (2019)

    Article  CAS  Google Scholar 

  49. Wang, M., Zhang, J., Yi, X., Liu, B., Zhao, X., Liu, X.: High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel. Beilstein J. Nanotechnol. 11, 240–251 (2020)

    Article  Google Scholar 

  50. Meng, Y., Yu, D., Teng, Y., Qi, H., Liu, X., Wu, Y., Zhao, X., Liu, X.: Coating of the NiMoO4 nanosheets on different-morphology ZnCo2O4 nanoarrays on Ni foam and their application in battery-supercapacitor hybrid devices. J. Energy Storage 29, 101195 (2020)

    Article  Google Scholar 

  51. Chen, D., Lu, M., Li, L., Cai, D., Li, J., Cao, J., Han, W.: Hierachical core–shell structural NiMoO4@NiS2 /MoS2 nanowires fabricated via an in situ sulfurization method for high performance asymmetric supercapacitors. J. Mater. Chem. A. 7, 21759–21765 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Regional Innovation and Development Joint Fund, National Natural Science Foundation of China (Grant no. U20A20249), the Science and Technology Program of Guangdong Province of China (Grant no. 2019A050510012, 2020A050515007, 2020A0505090001), the Science and Technology Development Fund, Macau SAR (File no. 0019/2019/AGJ), and by the Guangzhou emerging industry development fund project of Guangzhou development and reform commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, H., Wang, H. et al. Design and construction of hollow nanocube NiMoO4 electrode with high performance for asymmetric supercapacitor. J Nanostruct Chem 13, 79–88 (2023). https://doi.org/10.1007/s40097-021-00458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00458-x

Keywords

Navigation