Skip to main content
Log in

Exploiting the high conjugation capacity of creatinine on 3,3′-dithiodipropionic acid di(N-hydroxysuccinimide ester) functionalized gold nanoparticles towards sensitive determination of mercury (II) ion in water

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 07 April 2023

This article has been updated

Abstract

Mercury (Hg) contamination of the major environmental matrices, arising from human indiscriminate pursuit of industrialization without recourse to environment beneficiation is rife and worrisome. Amongst all the different forms of Hg, huge interest has been devoted to the inorganic Hg2+ determination, especially in water. Herein, a creatinine (CRN) conjugated on 3,3′-dithiodipropionic acid di(N-hydroxysuccinimide ester) (DTSP) functionalized gold nanoparticles (Au@DTSP/CRN)-based colorimetric assay was developed for Hg2+ detection in water samples. The DTSP was used to functionalize gold nanoparticles through the Au–S interaction, so as to impart a significantly high stability on the fabricated Au@DTSP, while also conferring coordination capacity on the nanoparticles. The Au@DTSP can bind to the amino group of CRN through its N-hydroxysuccinimide ester moiety, with the formation of an amide bond. The generated optical probe Au@DTSP/CRN aggregated in the presence of Hg2+, with a distinct change of solution colors from ruby red, through purple and to blue-grey within 10 min. The detection limit of 28.5 nM was achieved with linear calibration curves within 0.10–0.35 and 0.35–4.00 μM, while using the absorbance ratio (A680/A521) as the analytical response. Recoveries of 99.0–103.2% were obtained and the relative standard deviations were less than 5.5%. The Au@DTSP/CRN nanoprobe was applied for quantitative determination of Hg2+ in real water samples without significant interference from other metal ions, which is a positive indication of its utilitarian potentiality for Hg2+ profiling in aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

Abbreviations

AuNPs:

Gold nanoparticles

CRN:

Creatinine

Au@DTSP:

3,3′-Dithiodipropionic acid di(N-hydroxysuccinimide ester) functionalized gold nanoparticles

Au@DTSP/CRN:

Creatinine conjugated on 3,3′-dithiodipropionic acid di(N-hydroxysuccinimide ester) functionalized gold nanoparticles

Hg2 + :

Mercury (II) ion

References

  1. Yan, F., Shi, D., Zheng, T., Yun, K., Zhou, X., Chen, L.: Carbon dots as nanosensor for sensitive and selective detection of Hg2+ and l-cysteine by means of fluorescence “Off-On” switching. Sens. Actuators B Chem. 224, 926–935 (2016)

    Article  CAS  Google Scholar 

  2. Pytharopoulou, S., Kournoutou, G.G., Leotsinidis, M., Georgiou, C.D., Kalpaxis, D.L.: Dysfunctions of the translational machinery in digestive glands of mussels exposed to mercury ions. Aquat. Toxicol. 134, 23–33 (2013)

    Article  PubMed  Google Scholar 

  3. Yoon, S., Albers, A.E., Wong, A.P., Chang, C.J.: Screening mercury levels in fish with a selective fluorescent chemosensor. J. Am. Chem. Soc. 127(46), 16030–16031 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Mahaffey, K.R.: Methylmercury: a new look at the risks. Public Health Rep. 114(5), 396 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rice, K.M., Walker, E.M., Jr., Wu, M., Gillette, C., Blough, E.R.: Environmental mercury and its toxic effects. J. Prev. Med. Public Health 47(2), 74 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu, Q., Wang, S., Yang, M., Su, H., Li, G., Tang, Y., Hao, J.: Mercury flows in large-scale gold production and implications for Hg pollution control. J. Environ. Sci. 68, 91–99 (2018)

    Article  CAS  Google Scholar 

  7. Duan, P., Khan, S., Ali, N., Shereen, M.A., Siddique, R., Ali, B., Iqbal, H.M., Nabi, G., Sajjad, W., Bilal, M.: Biotransformation fate and sustainable mitigation of a potentially toxic element of mercury from environmental matrices. Arab. J. Chem. 13, 6949–6965 (2020)

    Article  CAS  Google Scholar 

  8. Wu, C., Gao, G., Zhai, K., Xu, L., Zhang, D.: A visual Hg2+ detection strategy based on distance as readout by G-quadruplex DNAzyme on microfluidic paper. Food Chem. 331, 127208 (2020)

    Article  CAS  PubMed  Google Scholar 

  9. Li, W., Chen, B., Zhang, H., Sun, H., Wang, J., Zhang, J., Fu, Y.: BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury (II) ions. Biosens. Bioelectron. 66, 251–258 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. World Health Organization’s (WHO) Guidelines for drinking-water quality (GDWQ). https://www.who.int/publications/i/item/9789241549950 (2020). Accessed 27 Dec 2020

  11. Çaylak, O., Elçi, S.G., Höl, A., Akdoğan, A., Divrikli, U., Elçi, L.: Use of an aminated Amberlite XAD-4 column coupled to flow injection cold vapour generation atomic absorption spectrometry for mercury speciation in water and fish tissue samples. Food Chem. 274, 487–493 (2019)

    Article  PubMed  Google Scholar 

  12. Almeida, I.L., Oliveira, M.D., Silva, J.B., Coelho, N.M.: Suitable extraction of soils and sediments for mercury species and determination combined with the cold vapor generation atomic absorption spectrometry technique. Microchem. J. 124, 326–330 (2016)

    Article  CAS  Google Scholar 

  13. de Wuilloud, J.C., Wuilloud, R.G., Silva, M.F., Olsina, R.A., Martinez, L.D.: Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry. Spectrochim. Acta B 57(2), 365–374 (2002)

    Article  Google Scholar 

  14. Yang, Y., Lu, L., Tian, X., Li, Y., Yang, C., Nie, Y., Zhou, Z.: Ratiometric fluorescence detection of mercuric ions by sole intrinsic dual-emitting gold nanoclusters. Sens. Actuators B Chem. 278, 82–87 (2019)

    Article  CAS  Google Scholar 

  15. Li, W., Liu, D., Bi, X., You, T.: Enzyme-triggered inner filter effect on the fluorescence of gold nanoclusters for ratiometric detection of mercury (II) ions via a dual-signal responsive logic. Sens. Actuators A Phys. 302, 111794 (2020)

    Article  CAS  Google Scholar 

  16. Wang, S., Song, X., Hu, J., Zhang, R., Men, L., Wei, W., Xie, T., Cao, J.: Direct speciation analysis of organic mercury in fish and kelp by on-line complexation and stacking using capillary electrophoresis. Food Chem. 281, 41–48 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. Fu, C.C., Hsieh, C.T., Juang, R.S., Gu, S., Gandomi, Y.A., Kelly, R.E., Kihm, K.D.: Electrochemical sensing of mercury ions in electrolyte solutions by nitrogen-doped graphene quantum dot electrodes at ultralow concentrations. J. Mol. Liq. 302, 112593 (2020)

    Article  CAS  Google Scholar 

  18. Huang, Y.L., Gao, Z.F., Jia, J., Luo, H.Q., Li, N.B.: A label-free electrochemical sensor for detection of mercury (II) ions based on the direct growth of guanine nanowire. J. Hazard. Mater. 308, 173–178 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Liu, L., Li, S., Liu, L., Deng, D., Xia, N.: Simple, sensitive and selective detection of dopamine using dithiobis(succinimidylpropionate)-modified gold nanoparticles as colorimetric probes. Analyst 137(16), 3794–3799 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. Jayeoye, T.J., Cheewasedtham, W., Putson, C., Rujiralai, T.: A selective probe based on 3-aminophenyl boronic acid assembly on dithiobis(succinimidylpropionate) functionalized gold nanoparticles for sialic acid detection in human serum. J. Mol. Liq. 281, 407–414 (2019)

    Article  CAS  Google Scholar 

  21. Jayeoye, T.J., Sirimahachai, U., Rujiralai, T.: Sensitive colorimetric detection of ascorbic acid based on seed mediated growth of sodium alginate reduced/stabilized gold nanoparticles. Carbohydr. Polym. 255, 117376 (2021)

    Article  CAS  PubMed  Google Scholar 

  22. Kateshiya, M.R., George, G., Rohit, J.V., Malek, N.I., Kailasa, S.K.: Ractopamine as a novel reagent for the fabrication of gold nanoparticles: colorimetric sensing of cysteine and Hg2+ ion with different spectral characteristics. Microchem. J. 158, 105212 (2020)

    Article  CAS  Google Scholar 

  23. Yu, C.J., Tseng, W.L.: Colorimetric detection of mercury (II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate. Langmuir 24(21), 12717–12722 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. Bhattacharjee, Y., Chakraborty, A.: Label-free cysteamine-capped silver nanoparticle-based colorimetric assay for Hg (II) detection in water with subnanomolar exactitude. ACS Sustain. Chem. Eng. 2(9), 2149–2154 (2014)

    Article  CAS  Google Scholar 

  25. Numan, A., Gill, A.A., Rafique, S., Guduri, M., Zhan, Y., Maddiboyina, B., Li, L., Singh, S., Dang, N.N.: Rationally engineered nanosensors: a novel strategy for the detection of heavy metal ions in the environment. J. Hazard. Mater. 409, 124493 (2020)

    Article  PubMed  Google Scholar 

  26. Feng, J.J., Huang, H., Chen, W.J., Chen, J.R., Lin, H.J., Wang, A.J.: Sensitive detection of mercury (II) ion using water-soluble captopril-stabilized fluorescent gold nanoparticles. Mater. Sci. Eng. C. 33(5), 2664–2668 (2013)

    Article  CAS  Google Scholar 

  27. Duan, J., Yin, H., Wei, R., Wang, W.: Facile colorimetric detection of Hg2+ based on anti-aggregation of silver nanoparticles. Biosens. Bioelectron. 57, 139–142 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Jin, W., Huang, P., Wei, G., Cao, Y., Wu, F.: Visualization and quantification of Hg2+ based on anti-aggregation of label-free gold nanoparticles in the presence of 2-mercaptobenzothiazole. Sens. Actuators B Chem. 233, 223–229 (2016)

    Article  CAS  Google Scholar 

  29. Kataria, R., Sethuraman, K., Vashisht, D., Vashisht, A., Mehta, S.K., Gupta, A.: Colorimetric detection of mercury ions based on anti-aggregation of gold nanoparticles using 3, 5-dimethyl-1-thiocarboxamidepyrazole. Microchem. J. 148, 299–305 (2019)

    Article  CAS  Google Scholar 

  30. Zhou, Y., Dong, H., Liu, L., Li, M., Xiao, K., Xu, M.: Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid. Sens. Actuators B Chem. 196, 106–111 (2014)

    Article  CAS  Google Scholar 

  31. Kora, A.J., Rastogi, L.: Peroxidase activity of biogenic platinum nanoparticles: a colorimetric probe towards selective detection of mercuric ions in water samples. Sens. Actuators B Chem. 254, 690–700 (2018)

    Article  CAS  Google Scholar 

  32. Lian, Q., Liu, H., Zheng, X., Li, X., Zhang, F., Gao, J.: Enhanced peroxidase-like activity of CuO/Pt nanoflowers for colorimetric and ultrasensitive Hg2+ detection in water sample. Appl. Surf. Sci. 483, 551–561 (2019)

    Article  CAS  Google Scholar 

  33. Rastogi, L., Ankam, D.P., Dash, K.: Intrinsic peroxidase-like activity of 4-amino hippuric acid reduced/stabilized gold nanoparticles and its application in the selective determination of mercury and iron in ground water. Spectrochim. Acta A 228, 117805 (2020)

    Article  CAS  Google Scholar 

  34. Wang, Y., Xu, L., Xie, W.: Rapid and sensitive colorimetric sensor for H2O2 and Hg2+ detection based on homogeneous iodide with high peroxidase-mimicking activity. Microchem. J. 147, 75–82 (2019)

    Article  CAS  Google Scholar 

  35. Zohora, N., Kumar, D., Yazdani, M., Rotello, V.M., Ramanathan, R., Bansal, V.: Rapid colorimetric detection of mercury using biosynthesized gold nanoparticles. Colloids. Surf. A 532, 451–457 (2017)

    Article  CAS  Google Scholar 

  36. Balasurya, S., Syed, A., Thomas, A.M., Marraiki, N., Elgorban, A.M., Raju, L.L., Das, A., Khan, S.S.: Rapid colorimetric detection of mercury using silver nanoparticles in the presence of methionine. Spectrochim. Acta A 228, 117712 (2020)

    Article  CAS  Google Scholar 

  37. Faghiri, F., Ghorbani, F.: Colorimetric and naked eye detection of trace Hg2+ ions in the environmental water samples based on plasmonic response of sodium alginate impregnated by silver nanoparticles. J. Hazard Mater. 374, 329–340 (2019)

    Article  CAS  PubMed  Google Scholar 

  38. Tripathi, R.M., Gupta, R.K., Singh, P., Bhadwal, A.S., Shrivastav, A., Kumar, N., Shrivastav, B.R.: Ultra-sensitive detection of mercury (II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach. Sens. Actuators B Chem. 204, 637–646 (2014)

    Article  CAS  Google Scholar 

  39. Gu, H., Liu, Y., Ren, T., Xia, W., Guo, Y., Shi, G.: An electrochemical biosensor based on double molecular recognition for selective monitoring of cerebral dopamine dynamics at 4 min interval. Sens. Actuators B Chem. 287, 356–363 (2019)

    Article  CAS  Google Scholar 

  40. Yang, H., Hu, Q., Ma, G., Chen, G., Tao, M., Zhang, W.: Hg2+ selective fluorescent chemosensor based on cation-π interaction. Chem. Res. Chin. Univ. 30(6), 910–914 (2014)

    Article  CAS  Google Scholar 

  41. Xia, Y., Zhu, C., Bian, J., Li, Y., Liu, X., Liu, Y.: Highly sensitive and selective colorimetric detection of creatinine based on synergistic effect of PEG/Hg2+-AuNPs. Nanomaterials 9(10), 1424 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, S., Geng, Y., Ye, N., Xiang, Y.: A simple and sensitive colorimetric sensor for determination of gentamicin in milk based on lysine functionalized gold nanoparticles. Microchem. J. 158, 105190 (2020)

    Article  CAS  Google Scholar 

  43. Jayeoye, T.J., Rujiralai, T.: Green, in situ fabrication of silver/poly (3-aminophenyl boronic acid)/sodium alginate nanogel and hydrogen peroxide sensing capacity. Carbohydr. Polym. 246, 116657 (2020)

    Article  CAS  PubMed  Google Scholar 

  44. Mahajan, P.G., Dige, N.C., Vanjare, B.D., Hong, S.K., Lee, K.H.: Gallotannin functionalized gold nanoparticles for rapid, selective and sensitive colorimetric detection of Ag+ in aqueous medium: approach to eco-friendly water analysis. Sens. Actuators B Chem. 281, 720–729 (2019)

    Article  CAS  Google Scholar 

  45. Shaban, S.M.: Studying the effect of newly synthesized cationic surfactant on silver nanoparticles formation and their biological activity. J. Mol. Liq. 216, 137–145 (2016)

    Article  CAS  Google Scholar 

  46. Palanisamy, S., Zhang, X., He, T.: Fast, sensitive and selective colorimetric gold bioassay for dopamine detection. J. Mater. Chem. B 3(29), 6019–6025 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. Banerji, B., Pramanik, S.K.: Binding studies of creatinine and urea on iron-nanoparticle. Springerplus 4, 708 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Article  CAS  Google Scholar 

  49. Alula, M.T., Karamchand, L., Hendricks, N.R., Blackburn, J.M.: Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine. Anal. Chim. Acta 1007, 40–49 (2018)

    Article  CAS  PubMed  Google Scholar 

  50. Jayeoye, T.J., Rujiralai, T.: Sensitive and selective colorimetric probe for fluoride detection based on the interaction between 3-aminophenylboronic acid and dithiobis (succinimidylpropionate) modified gold nanoparticles. New J. Chem. 44(15), 5711–5719 (2020)

    Article  CAS  Google Scholar 

  51. ICH, International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Q2B Validation of Analytical Procedures: Methodology. ICH-Q2B, pp. 1–10 (1996)

  52. Guo, X., Li, M., Liu, A., Jiang, M., Niu, X., Liu, X.: Adsorption mechanisms and characteristics of Hg2+ removal by different fractions of biochar. Water 12(8), 2105 (2020)

    Article  CAS  Google Scholar 

  53. He, Y., Liang, Y., Song, H.: One-pot preparation of creatinine-functionalized gold nanoparticles for colorimetric detection of silver ions. Plasmonics 11(2), 587–591 (2016)

    Article  CAS  Google Scholar 

  54. Rujiralai, T., Cheewasedtham, W., Jayeoye, T.J., Kaewsara, S., Plaisen, S.: Hydrolyzed product mediated aggregation of l-cysteine-modified gold nanoparticles as a colorimetric probe for carbamate residues in chilis. Anal. Lett. 53(4), 574–588 (2020)

    Article  CAS  Google Scholar 

  55. Li, Z., Sun, H., Ma, X., Su, R., Sun, R., Yang, C., Sun, C.: Label-free fluorescence “turn-on” strategy for mercury (II) detection based on the T-Hg2+-T configuration and the DNA-sensitized luminescence of terbium (III). Anal. Chim. Acta 1099, 136–144 (2020)

    Article  CAS  PubMed  Google Scholar 

  56. Wang, L., Yang, Y., Liang, H., Wu, N., Peng, X., Wang, L., Song, Y.: A novel N, S-rich COF and its derived hollow N, S-doped carbon@Pd nanorods for electrochemical detection of Hg2+and paracetamol. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2020.124528

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li, L., Feng, D., Fang, X., Han, X., Zhang, Y.: Visual sensing of Hg2+ using unmodified Au@Ag core-shell nanoparticles. J. Nanostructure Chem. 4(3), 117 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Postdoctoral Fellowship from Prince of Songkla University for Dr. Titilope John Jayeoye and Faculty of Science Research Fund (2020) SCI663001. The authors greatly thank the Division of Physical Science and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research and Innovation, Faculty of Science, Prince of Songkla University for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thitima Rujiralai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2907 kb)new Supplementary is attached

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayeoye, T.J., Kangkamano, T. & Rujiralai, T. Exploiting the high conjugation capacity of creatinine on 3,3′-dithiodipropionic acid di(N-hydroxysuccinimide ester) functionalized gold nanoparticles towards sensitive determination of mercury (II) ion in water. J Nanostruct Chem 12, 263–276 (2022). https://doi.org/10.1007/s40097-021-00415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00415-8

Keywords

Navigation