Skip to main content

Advertisement

Log in

Synthesis, biological investigation and catalytic application using the alcoholic extract of Black Cumin (Bunium Persicum) seeds-based silver nanoparticles

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The inadequate role of silver nanoparticles is evident from their underutilization in myriad applications in the modern era. Herein we report the environment-friendly, facile, and robust synthesis of silver nanoparticles (Ag-NPs) from alcoholic extracts of black cumin (Bunium persicum) seeds to reduce and stabilise agents. The extract principally consists of nigellon, terpenoid, thymoquinone, polyene, phenylpropanoids, and phototoxic furanocoumarins. The effect of pH revealed that the BCS@Ag-NPs were more stable at neutral pH than acidic and basic. A change in the size and number of BCS@Ag-NPs was observed at high sodium chloride solution concentrations showing their instability in a concentrated salt solution. The synthesized BCS@Ag-NPs were considered significant catalysts showed by approximate 99% conversion of the 4-nitrophenolate anion into 4-aminophenol in 24 min. The surface plasmon resonance of BCS@Ag-NPs at 430 nm was recorded on UV–Vis spectrometer, and particle size ranging from 35 to 77 nm was measured through scanning electron microscopic (SEM) analysis. FTIR spectra confirmed the presence of amines, alcohols and amide functional groups at 3365 cm−1, 1646 cm−1 and 1026 cm−1 capped along with the reduction of BCS@Ag-NPs. The firm peaks for Ag atoms in BCS@Ag-NPs at almost 0.4, 3.1 and 3.2 keV in EDX analysis showed the presence of elemental silver. Nevertheless, the alcoholic seed extract and synthesized BCS@Ag-NPs exhibited excellent various pharmacological activities. Both the tested samples significantly inhibited Urease, CA-II, PDE-I. The inhibitory potential against tyrosinase was appreciated against extract as compared to BCS@Ag-NPs. The alcoholic extract was effective in the inhibition of E. coli. Both of the tested samples proved significant analgesia in the acetic acid-induced writhing model. A noticeable sedative response was observed as a compared extract. No mortality was detected in acute toxicity. In conclusion, these results provide the scientific rationale to the folklore of black cumin for GIT problems, hypertension, bronchodilation and analgesic.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

BCS@Ag-NPs:

Black cumin seeds silver nanoparticles

Ag NPs:

Silver nanoparticles

Ag+ 1 :

Silver ions

AgNO3 :

Silver nitrate

UV–Vis:

Ultraviolet–visible spectroscopy

FTIR:

Fourier transform infrared spectroscopy

SEM:

Scanning electron microscopy

NaCl:

Sodium chloride

nm:

Nanometer

gm:

Gram

M:

Molar

MRI:

Magnetic resonance imaging

rpm:

Revolution per minute

NaOH:

Sodium hydroxide

4-NPA:

4-Nitrophenyl acetate(4-NPA)

DMSO:

Dimethyl sulfoxide

AA:

Acetic acid

4-NP:

4-Nitrophenol

4-AP:

4-Aminophenol

mg:

Milligram

mm:

Millimeter

TGA:

Thermogravimetric analysis

AFM:

Atomic force microscopy

EDX:

Energy dispersive X-ray

XRD:

X-ray diffraction

mL:

Millilitre

OD:

Optical density

GIT:

Gastrointestinal disorder

CA-II:

Carbonic anhydrase

EDTA:

Ethylene diamine tetraacetate

PDE:

Phosphodiesterase

E. coli :

Escherichia coli

References

  1. Salata, O.V.: Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2, 1–6 (2004)

    Article  Google Scholar 

  2. Burduşel, A.C., Gherasim, O., Grumezescu, A.M., Mogoantă, L., Ficai, A., Andronescu, E.: Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials 8, 681–706 (2018)

    Article  PubMed Central  Google Scholar 

  3. Alshareef, A., Laird, K., Cross, R.B.M.: Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium. Appl. Surf. Sci. 424, 310–315 (2017)

    Article  CAS  Google Scholar 

  4. Adur, A.J., Nandini, N., Shilpashree, M.K., Ramay, R., Srinatha, N.: Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry. J. Photochem. Photobiol. B Biol. 18, 30–34 (2018)

    Article  Google Scholar 

  5. Etemadzade, M., Ghamarypour, A., Zabihollahi, R., Shabbak, G., Shirazi, M., Sahebjamee, H., Vaziri, A.Z., Assadi, A., Ardestani, M.S., Shandiz, S.A.S.: Synthesis and evaluation of antiviral activities of novel sonochemical silver nanorods against HIV and HCV viruses. Asian Pac. J. Trop. Dis. 6, 854–858 (2016)

    Article  Google Scholar 

  6. Zhang, H.F., Liu, Z.G., Shen, W., Gurunathan, S.: Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1534–1568 (2016)

    Article  PubMed Central  Google Scholar 

  7. Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z.S., Chen, G.: Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov. 20, 595–601 (2015)

    CAS  Google Scholar 

  8. Gong, C.P., Li, S.C., Wang, R.Y., Gonga, C.P., Lia, S.C., Wang, R.Y.: Development of biosynthesized silver nanoparticles based formulation for treating wounds during nursing care in hospitals. J. Photochem. Photobiol. B. Biol. 183, 137–141 (2018)

    Article  CAS  Google Scholar 

  9. Lu, H., Liu, Y., Guo, J., Wu, H., Wang, J., Wu, G.: Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int. J. Mol. Sci. 17, 334–352 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jin, G., Qin, H., Cao, H., Qian, S., Zhao, Y., Peng, X., Zhang, X., Liu, X., Chu, P.K.: Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium. Biomaterials 35, 7699–7713 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. Soni, N., Dhiman, R.C.: Phytochemical, anti-oxidant, larvicidal and antimicrobial activities of castor (Ricinus communis) synthesized silver nanoparticles. Chin. Herb. Med. 9, 289–294 (2017)

    Article  Google Scholar 

  12. Karthik, C.S., Manukumar, H.M., Ananda, A.P., Nagashree, S., Rakesh, K.P., Mallesha, L., Qin, H.L., Umesha, S., Mallu, P., Krishnamurthy, N.B.: Synthesis of novel benzodioxane midst piperazine moiety decorated chitosan silver nanoparticle against biohazard pathogens and as a potential anti-inflammatory candidate: a molecular docking studies. Int. J. Biol. Macromol. 108, 489–502 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. Namasivayam, S.K.R., Aroma, R., Manikanta, M., Gopinath, P., Francis, A.L.: Evaluation of enzyme activity inhibition of biogenic silver nanoparticles against microbial extracellular enzymes. Int. J. Pharm. Tech. Res. 9, 40–47 (2016)

    CAS  Google Scholar 

  14. Ma, S., Mu, J., Jiang, L.: Effect of refluxed silver nanoparticles on inhibition and enhancement of enzymatic activity of glucose oxidase. Colloids Surf. A Physicochem. Eng. Asp. 345, 101–105 (2009)

    Article  CAS  Google Scholar 

  15. Abbas, Q., Saleem, M., Phull, A.R., Rafiq, M., Hassan, M., Lee, K.H., Seo, S.Y.: Green synthesis of silver nanoparticles using Bidens Frondosa extract and their tyrosinase activity. Iran J. Pharm. Res. 16, 763–770 (2017)

    PubMed  PubMed Central  Google Scholar 

  16. Juan, H., Chong, C., Runqing, L., Wenzhu, G.: Effects of silver nanoparticles on soil ammonia-oxidizing microorganisms under temperatures of 25 and 5 °C. Pedosphere 28, 607–616 (2018)

    Article  Google Scholar 

  17. Shrivastava, S., Bera, T., Singh, S.K., Singh, G., Ramachandrarao, P., Dash, D.: Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3, 1357–1364 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. Naz, S.S., Shah, M.R., Ul-Islam, N., Khan, A., Nazir, S., Qaisar, S., Alam, S.S.: Synthesis and bioactivities of silver nanoparticles capped with 5-amino-β-resorcylic acid hydrochloride dehydrate. J. Nanobiotechnol. 12, 1–8 (2014)

    Google Scholar 

  19. Singh, P., Kim, Y.J., Singh, H., Wang, C., Hwang, K.H., Farh, M.E.-A., Yang, D.C.: Biosynthesis, characterization and antimicrobial applications of silver nanoparticles. Int. J. Nanomed. 10, 2567–2577 (2015)

    CAS  Google Scholar 

  20. Andreescu, D., Eastman, C., Balantrapu, K., Goia, D.V.: A simple route for manufacturing highly dispersed silver nanoparticles. J. Mater. Res. 22, 2488–2496 (2007)

    Article  CAS  Google Scholar 

  21. Rodriguez-Sanchez, L., Blanco, M., Lopez-Quintela, M.: Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B 104, 9683–9688 (2000)

    Article  CAS  Google Scholar 

  22. Pastoriza-Santos, I., Liz-Marzán, L.M.: Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18, 2888–2894 (2002)

    Article  CAS  Google Scholar 

  23. Taleb, A., Petit, C., Pileni, M.: Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem. Mater. 9, 950–959 (1997)

    Article  CAS  Google Scholar 

  24. Bhainsa, K.C., Souza, S.D.: Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloid Surface B: Biointerfaces. 47, 160–164 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. Saifuddin, N., Wong, C., Yasumira, A.: Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J. Chem. 6, 61–70 (2009)

    CAS  Google Scholar 

  26. Parashar, V., Parashar, R., Sharma, B., Pandey, A.C.: Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Digest. J. Nanomater Biostruct. 4, 45–50 (2009)

    Google Scholar 

  27. Ismail, M., Gul, S., Khan, M.I., Khan, M.A., Asiri, A.M., Khan, S.B.: Medicago polymorpha-mediated antibacterial silver nanoparticles in the reduction of methyl orange. Green Process. Synthesis. 8, 118–127 (2019)

    Article  CAS  Google Scholar 

  28. Medda, S., Hajra, A., Dey, U., Bose, P., Mondal, N.K.: Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl. Nanosci. 7, 875–880 (2015)

    Article  Google Scholar 

  29. Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., Srinivasan, K.: Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 594–598 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., Pyne, S., Misra, A.: Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf., A 348, 212–216 (2009)

    Article  CAS  Google Scholar 

  31. Sapana, J., Rizwan, A., Nirmala, K.J., Rajesh, K.M.: Green synthesis of nanoparticles using plant extracts: a review. Environ. Chem. Lett. 19, 355–375 (2021)

    Article  Google Scholar 

  32. Saba, P., Maryam, G., Saeid, B.: Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostruct. Chem. 9, 1–9 (2019)

    Article  CAS  Google Scholar 

  33. Somayeh, F., Mina, J., Mohammad, Y.: Biologically synthesized silver nanoparticles by aqueous extract of Satureja intermedia C.A. Mey and the evaluation of total phenolic and flavonoid contents and antioxidant activity. J. Nanostruct. Chem. 6, 357–364 (2016)

    Article  Google Scholar 

  34. Mahendran, V., Gnanadhas, G., Kanniah, P., Shanmugam, R., Chelladurai, M., Gurusamy, A.: Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors. J. Nanostruct. Chem. 3, 17–25 (2013)

    Article  Google Scholar 

  35. Ahamed, M., Khan, M., Siddiqui, M., Al-Salhi, M.S., Alrokayan, S.A.: Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Physica E: Physica E Low Dimens. Syst. Nanostruct. 43, 1266–1271 (2011)

    Article  CAS  Google Scholar 

  36. Gardea-Torresdey, J., Parsons, J., Gomez, E., Peralta-Videa, J., Troiani, H., Santiago, P., Yacaman, M.J.: Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett. 2, 397–401 (2002)

    Article  CAS  Google Scholar 

  37. Jha, A.K., Prasad, K., Kulkarni, A.: Plant system: nature’s nanofactory. Colloids Surf. B: Biointerfaces. 73, 219–223 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. Chandra, R., Chowdhary, P.: Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ. Sci. Process. Impacts. 17, 326–342 (2015)

    Article  CAS  PubMed  Google Scholar 

  39. Pankaj, C., Vishvas, H., Abhay, Book, R.: Review: environmental, pollutants and their bioremediation approaches. Front. Bioeng. Biotechnol. 6, Article 193 (2018).

  40. Ganesh, S., Ramasubba, R.P., Soo-Hong, L., Sang-Youn, K.: Catalytic degradability of p-nitrophenol using ecofriendly silver nanoparticles. Metals. 10, 1661–1681 (2020)

    Article  Google Scholar 

  41. Luquea, P.A., Nava, O., Soto-Robles, C.A., Chinchillas-Chinchillas, M.J., Garrafa-Galvez, H.E., Baez-Lopez, Y.A., Valdez-Núñez, K.P., Vilchis-Nestor, A.R., Castro-Beltrán, A.: Improved photocatalytic efficiency of SnO2 nanoparticles through green synthesis. Optik 206, 164299–164306 (2020)

    Article  Google Scholar 

  42. Kamran, T., Sadia, N., Baoshan, L., Arif, U.K., Zia, U.H.K., Aftab, A., Faheem, U.K.: An efficient photo catalytic activity of green synthesized silver nanoparticles using Salvadora persica stem extract. Sep. Purif. Technol. 150, 316–324 (2015)

    Article  Google Scholar 

  43. Teh, C.M., Mohamed, A.R.: Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. J. Alloys. Compd 509, 1648–1660 (2011)

    Article  CAS  Google Scholar 

  44. Kulkarni, S.J., Kaware, J.P.: Review on research for removal of phenol from wastewater. Int. J. Sci. Res. 3, 1–4 (2013)

    Google Scholar 

  45. Ai, L., Jiang, J.: Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel. Bioresour. Technol. 132, 374–377 (2013)

    Article  CAS  PubMed  Google Scholar 

  46. Ali Khan, S., Khan, S.B., Kamal, T., Asiri, S.B., Akhtar, K.: Recent development of chitosan nanocomposites for environmental applications. Recent Pat. Nano. Technol. 10, 181–188 (2016)

    Article  Google Scholar 

  47. Hassanzadazar, H., Taami, B.M., Aminzare, S.: Daneshamooz, Bunium persicum (Boiss.) B. Fedtsch: an overview on phytochemistry, therapeutic uses and its application in the food industry. J. Appl. Pharm. Sci. 8, 150–158 (2018)

    Article  CAS  Google Scholar 

  48. Sofi, P.A., Zeerak, N.A., Singh, P.: Kala zeera (Bunium persicum Bioss.): a Kashmirian high value crop. Turk. J. Biol. 33, 249–258 (2009)

    Google Scholar 

  49. Shelly, B., Sharma, S.: Assessment of the efficacy of some physicochemical and hormonal treatments for dormancy removal and germination improvement in Bunium persicum (Kala Zeera). Int. J. Chem. Stud. 8, 2330–2337 (2020)

    Article  Google Scholar 

  50. Giancarlo, S., Rosa, L., Nadjaji, F., Francesco, M.: Hypoglycaemic activity of two spice extracts: Rhus coriaria and Bunium persicum. Natural. Prod. Res. 20, 882–886 (2006)

    Article  CAS  Google Scholar 

  51. Ghasemi, M., Puteh, A.B., Sinniah, U.R., Wahab, Z.B.: Effect of different temperature regimes on seed germination in Bunium persicum (Black zira or Black cumin) ecotypes. Int. J. Agric. Res. 2, 240–246 (2012)

    Google Scholar 

  52. Talebi, M., Moghaddam, M., Pirbalouti, A.G.: Variability in essential oil content and composition of Bunium persicum Boiss. Populations growing wild in northeast of Iran. J. Essent Oil Res. 30, 258–264 (2018)

    Article  CAS  Google Scholar 

  53. Prateek, M., Swati, J., Suman, R., Jain, N.K.: Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 46, S115–S126 (2018)

    Article  Google Scholar 

  54. Amin, M., Anwar, F., Janjua, M.R.S.A., Iqbal, M.A., Rashid, U.: Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. Berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int. J. Mol. Sci. 13, 9923–9941 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rauf, A., Orhan, I.E., Ertas, A., Temel, H., Hadda, M.A., Saleem, M., Raza, M., Khan, H.: Elucidation of phosphodiesterase-1 Inhibitory effect of some selected natural polyphenolics using in vitro and in silico methods. Curr. Top. Med. Chem. 17, 412–417 (2017)

    Article  CAS  PubMed  Google Scholar 

  56. Amoghimath, S., Jayanthi, M., Kalabharathi, H., Shruthi, S., Suresha, R., Vaibhavi, P.: Evaluation of analgesic activity of perindopril in albino mice. Adv. Pharm. Technol. Res. 5, 129–133 (2014)

    Article  Google Scholar 

  57. Huma, Z., Rauf, A., Natasha, K., Shah, N., Ibrar, M., Barkatullah, Khan, H., Mubarak, M.S., Maalik, A.: Evaluation of antinociceptive potential of methanolic extract of different parts of Ehretia serrata Roxb and Ehretia obtusifolia in vivo. Biomed. Res. 29, 1792–1796 (2018)

    Article  Google Scholar 

  58. Rauf, A., Muhammad, N., Barkatullah, Khan, H., Khan, H., Abbas, H.F., Khan, A., Arfan, M., Uddin, G.: Antinociceptive, sedative and muscle relaxants activity of Caralluma tuberculata. Orthopedic Muscular Sys. 2(1000131), 1–6 (2013)

    Google Scholar 

  59. Jebin, R.I., Molla, M., Chowdhury, S.M., Rafe, M.R.: Antidepressant and sedative-hypnotic activities of methanolic extract of Grewia asiatica Linn. Leaves in mice. Bangladesh Pharm. J. 22, 185–191 (2019)

    Article  Google Scholar 

  60. Pearson, M.A., Michel, L.O., Hausinger, R.P., Karplus, P.A.: Structures of Cys319 variants and acetohydroxamate-inhibited Klebsiella aerogenes urease. Biochemistry 36, 8164–8172 (1997)

    Article  CAS  PubMed  Google Scholar 

  61. Mobley, H.L.T., Mend, G.L., Hazell, S.L.: Urease-Helicobacter pylori: physiology and genetics. ASM Press, Washington (2001)

    Book  Google Scholar 

  62. Ajnai, G., Chiu, A., Kan, T., Cheng, C.: Trends of gold nanoparticle-based drug delivery system in cancer therapy. J. Exp. Clin. Med. 6, 172–178 (2014)

    Article  CAS  Google Scholar 

  63. Castronovo, M., Radovic, S., Grunwald, C., Casalis, L., Morgante, M., Scoles, G.: Control of steric hindrance on restriction enzyme reactions with surface-bound DNA nanostructures. Nano Lett. 8, 4140–4145 (2008)

    Article  CAS  PubMed  Google Scholar 

  64. Copp, H.L., Shapiro, D.J.: National ambulatory antibiotic prescribing patterns for pediatric urinary tract infection, 1998–2007. Pediatrics 127, 1027–1033 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  65. Toma, C.-C., Olah, N.-K., Vlase, L., Mogosan, C., Mocan, A.: Comparative studies on polyphenolic composition, antioxidant and diuretic effects of Nigella sativa L. (black cumin) and Nigella damascena L. (lady-in-a-mist) seeds. Molecules 20, 9560–9574 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bhattacharya, A., Mandal, A., Paul, R., Sengupta, S.: Black cumin (Nigella sativa L.)—a review. J. Plants Dev. Sci. 4, 1–43 (2012)

    CAS  Google Scholar 

  67. Innocenti, A., Gülçin, I., Scozzafava, A., Supuran, C.T.: Carbonic anhydrase inhibitors. Antioxidant polyphenols effectively inhibit mammalian isoforms I-XV. Bioorg. Med. Chem. Lett. 20, 5050–5053 (2010)

    Article  CAS  PubMed  Google Scholar 

  68. Karioti, A., Carta, F., Supuran, C.T.: Phenols and polyphenols as carbonic anhydrase inhibitors. Molecules 21, 1649–1676 (2016)

    Article  CAS  PubMed Central  Google Scholar 

  69. Zolghadri, B., Khan, M.T.H., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., Saboury, A.A.: A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med Chem. 34, 279–309 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hagiwara, M., Endo, T., Hidaka, H.: Effects of vinpocetine on cyclic nucleotide metabolism in vascular smooth muscle. Biochem. Pharmacol. 33, 453–457 (1984)

    Article  CAS  PubMed  Google Scholar 

  71. Miyazaki, M.: The effect of a cerebral vasodilator, vinpocetine, on cerebral vascular resistance evaluated by the Doppler ultrasonic technique in patients with cerebrovascular diseases. Angiology 46, 53–58 (1995)

    Article  CAS  PubMed  Google Scholar 

  72. Muhammad, N., Saeed, M., Khan, H.: Antipyretic, analgesic and anti-inflammatory activity of Viola betonicifolia whole plant. BMC Compl. Alter. Med. 12, 59 (2012)

    Article  Google Scholar 

  73. Tanko, Y., Mohammed, A., Okasha, M.A., Shuaibu, A., Magaji, M.G., Yaro, A.H.: Analgesic and anti-inflammatory activities of ethanol seed extract of Nigella sativa (black cumin) in mice and rats. Edit. Advis. Board. 18, 277–281 (2005)

    Google Scholar 

  74. Abdel-Fattah, A.F., Matsumoto, K., Watanabea, H.: Antinociceptive effects of Nigella sativa oil and its major component, thymoquinone, in mice. Eur. J. Pharmacol. 400, 89–97 (2000)

    Article  CAS  PubMed  Google Scholar 

  75. Ediz, L.M.A., Budancamanak, D.: Effects of thymoquinone (volatile oil of black cumin) on rheumatoid arthritis in rat models. Phytother. Res. 21, 895–897 (2007)

    Article  PubMed  Google Scholar 

  76. Al-Naggar, T.B., Gómez-Serranillos, M.P., Carretero, M.E., Villar, A.M.: Neuropharmacological activity of Nigella sativa L. extracts. J Ethnopharmacol. 88, 63–68 (2003)

    Article  CAS  PubMed  Google Scholar 

  77. Hosseinzadeh, H., Parvardeh, S.: Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomedicine 11, 56–64 (2004)

    Article  CAS  PubMed  Google Scholar 

  78. Nastaran, K., Ahmad, M., Sayeh, J.M., Seyed, M.R.: Green synthesis of silver nanoparticles and antioxidant activities in Bunium persicum (Boiss.) B. Fedtsch seeds extract. J. Nanoanal. 5, 188–194 (2018)

    Google Scholar 

  79. Mahdavi-Ourtakand, M., Jafari, P., Safaeijavan, R.: Antibacterial activity of biosynthesized silver nanoparticles of fruit extracts from Bunium persicum Boiss. Int. J. Bio-Inorg. Hybr. Nanomater. 6, 245–251 (2017)

    Google Scholar 

  80. Akbar, R.-V., Mahmoud, N., Mohammad, A.: Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J. Colloid Interface Sci. 470, 268–275 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Higher Education Commission of Pakistan for providing fund under grant number NRPU, Application Ref No. HEC/R&D/NRPU/2017/7343. The work is funded by grant number 14-MED333-10 from the National Science, Technology and Innovation Plan (MAARIFAH), the King Abdul-Aziz City for Science and Technology (KACST), Kingdom of Saudi Arabia. We also thank the Science and Technology Unit at Umm Al-Qura University for their continued logistic support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdur Rauf or Aneela Maalik.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Bawazeer, S., Rauf, A. et al. Synthesis, biological investigation and catalytic application using the alcoholic extract of Black Cumin (Bunium Persicum) seeds-based silver nanoparticles. J Nanostruct Chem 12, 59–77 (2022). https://doi.org/10.1007/s40097-021-00402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00402-z

Keywords

Navigation