Facile fabrication of Au-loaded CdO nanoconstructs with tuned properties for photocatalytic and biomedical applications


Cadmium oxide (CdO) had long been investigated for decades as prototypical wide-band-gap transparent conducting oxides (TCOs) possessing excellent n-type ability having its implications in the field of photo electronics. Despite this, there exists an uncertainty on the toxicity of CdO content during the synthesis and product retrieval which limits their use in biological applications. In this context, an approach to enhance the inbuilt properties of CdO particles by the means of loading (in coating form) with gold (Au) nanoparticles (NPs) to generate Au@CdO nanoconstructs (NCs) has been reported. Thus, formed Au@CdO NCs have been characterized by various spectroscopic and electron microscopic analysis for the structural, optical, and biological properties. For example, the UV–Vis spectroscopy revealed a typical λmax of CdO at 302 nm, and for the Au@CdO, a shift toward 496 nm was observed. The diffraction pattern demonstrated the crystalline phase corresponding to (1 1 1) plane with mean grain sizes of 24.9 and 30.6 nm for the CdO and Au@CdO, respectively. The FTIR and optical studies highlighted the intermolecular bonding with an increased bandgap confirming the efficient coating of Au onto CdO. The FESEM demonstrated spherical-to-elliptical-shaped anisotropic particles following the coating of CdO with Au and the grain size getting increased from 30 to 42 nm. On testing of the photocatalytic activity, we found that the Au@CdO NCs efficiently degraded the Rhodamine B dye (96% in 180 min) following the irradiation under artificial UV light. Furthermore, the Au@CdO NCs showed a significant antimicrobial effect at 80 μg/mL associated with a decline in the cell count. Alongside, the IC50 of Au@CdO against A549 and PBMC cells was fixed at 46.87 and 55.14 μg/mL, respectively. Such multifaceted Au@CdO NCs possessing optical properties might present themselves as the potential candidates for the extended photocatalytic and biomedical applications.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Rohela, G.K., Srinivasulu, Y., Rathore, M.S.: A review paper on recent trends in bio-nanotechnology: implications and potentials. Nanosci. Nanotechnol. Asia 9, 12 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    Samer, B., Muhammad, A., Tiziano, T., Marco, C., Flavio, R.: The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules 25, 112 (2020)

    Google Scholar 

  3. 3.

    Rahman, G., Najaf, Z., Mehmood, A., Bilal, S., Shah, A.H.A., Mian, S.A., Ali, G.: An overview of the recent progress in the synthesis and applications of carbon nanotubes. Carbon 5, 3 (2019)

    CAS  Google Scholar 

  4. 4.

    Muhammad, A.A.M.A., Nur Hawa, N.A., Shalini, K., Yusran, S.: Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater. Des. 186, 108199 (2020)

    Article  Google Scholar 

  5. 5.

    Wang, Z., Chen, C., Wu, K., Chong, H., Ye, H.: Transparent conductive oxides and their applications in near infrared plasmonics. Phys. Status Solidi A 216, 1700794 (2019)

    Article  Google Scholar 

  6. 6.

    Afre, R.A., Sharma, N., Sharon, M., Sharon, M.: Transparent conducting oxide films for various applications: a review. Rev. Adv. Mater. Sci. 53, 79–89 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    Vidhya, M., Pandi, P.R., Archana, R., Sadayandi, K., et al.: Comparison of sunlight-driven photocatalytic activity of semiconductor metal oxides of tin oxide and cadmium oxide nanoparticles. Optik 217, 164878 (2020)

    Article  Google Scholar 

  8. 8.

    Helen, S.J., Devadason, S., Haris, M., Mahalingam, T.: Transparent conducting Mo-doped CdO thin films by spray pyrolysis method for solar cell applications. J. Electron. Mater. 47, 2439–2446 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    Mosquera, E., Pozo, I., Morelm, M.: Structure and red shift of optical band gap in CdO–ZnO nanocomposite synthesized by the sol gel method. J. Solid State Chem. 206, 265–271 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    Thema, F.T., Beukes, P., Gurib-Fakim, A., Maaza, M.: Green synthesis of monteponite CdO nanoparticles by Agathosma betulina natural extract. J. Alloy Comp. 646, 1043–1048 (2015)

    CAS  Article  Google Scholar 

  11. 11.

    Mostafa, A.M., Mwafy, E.A.: Laser-assisted for preparation Ag/CdO nanocomposite thin film: structural and optical study. Opt. Mater. 107, 110124 (2020)

    CAS  Article  Google Scholar 

  12. 12.

    Mwafy, E.A., Hasanin, M.S., Mostafa, A.M.: Cadmium oxide/TEMPO-oxidized cellulose nanocomposites produced by pulsed laser ablation in liquid environment: synthesis, characterization, and antimicrobial activity. Opt. Laser Technol. 120, 105744 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    Madeeha, N., Faiza, Z.G., Saad, H., Abdul, M., Sania, N., Joham, S.A., Muhammad, Z.: Green and chemical syntheses of CdO NPs: a comparative study for yield attributes, biological characteristics, and toxicity concerns. ACS Omega 5, 5739–5747 (2020)

    Article  Google Scholar 

  14. 14.

    Mostafa, A.M., Mwafy, E.A.: Synthesis of ZnO/CdO thin film for catalytic degradation of 4-nitrophenol. J. Mol. Struct. 1221, 128872 (2020)

    CAS  Article  Google Scholar 

  15. 15.

    Balmuri, S.R., Selvaraj, U., Kumar, V.V., Anthony, S.P., et al.: Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: implications for mitigating cadmium toxicity in environment. Environ. Res. 152, 141–149 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    Brust, M., Bethell, D., Kiely, C.J., Schiffen, D.J.: Self-assembled gold nanoparticle thin films with non-metallic optical and electronic properties. Langmuir 14, 5425–5429 (1998)

    CAS  Article  Google Scholar 

  17. 17.

    Yousufi, M.K.: To study antibacterial activity of allium sativum, zingiber officinale and allium cepa by Kirby-Bauer method. J. Pharm. Biol. Sci. 4, 6–8 (2012)

    Google Scholar 

  18. 18.

    Kumar, R.S., Almansour, A.I., Arumugam, N., Mohammad, F.: Design, synthesis and in vitro mechanistic investigation of novel hexacyclic cage-like hybrid heterocycles. Molecules 24, 3820 (2019)

    Article  Google Scholar 

  19. 19.

    Mostafa, A.M., Yousef, S.A., Eisa, W.H., Ewaida, M.A., Al-Ashkar, E.A.: Au@CdO core/shell nanoparticles synthesized by pulsed laser ablation in Au precursor solution. Appl. Phys. A 123, 774 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    Gültekin, A., Karanfil, G., Özel, F., Kus, M., Say, R., Sönmezoğlu, S.: Synthesis and characterisations of Au-nanoparticle-doped TiO2 and CdO thin films. J. Phys. Chem. Solids 75, 775–781 (2014)

    Article  Google Scholar 

  21. 21.

    Kose, S., Atay, F., Bilgin, V., Akyuz, I.: In doped CdO films: electrical, optical, structural and surface properties. Int. J. Hydrog. Energy 34, 5260–5266 (2009)

    CAS  Article  Google Scholar 

  22. 22.

    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751–767 (1976)

    Article  Google Scholar 

  23. 23.

    Kaviyarasu, K., Manikandan, E., Paulraj, P., Mohamed, S.B., Kennedy, J.: One dimensional well-aligned CdO nanocrystal by solvothermal method. J. Alloy Compd. 593, 67–70 (2014)

    CAS  Article  Google Scholar 

  24. 24.

    Sivakumar, S., Venkatesan, A., Soundhirarajan, P., Khatiwada, C.P.: Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method. Spectrochim. Acta A 136, 1751–1759 (2015)

    CAS  Article  Google Scholar 

  25. 25.

    Solati, E., Mashayekh, M., Dorranian, D.: Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation. Appl. Phys. A Mater. Sci. Process 112, 689–694 (2013)

    CAS  Article  Google Scholar 

  26. 26.

    Janani, B., Gayathri, G., Syed, A., Raju, L.L., Marraiki, N., Elgorban, A.M., Khan, S.S.: The effect of various capping agents on surface modifications of CdO NPs and the investigation of photocatalytic performance, antibacterial and anti-biofilm activities. J. Inorg. Organomet. Polym. 30, 1865–1876 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    Salehi, B., Mehrabian, S., Ahmadi, M.: Investigation of antibacterial effect of Cadmium oxide nanoparticles on Staphylococcus aureus bacteria. J. Nanobiotechnol. 12, 26 (2014)

    Article  Google Scholar 

  28. 28.

    Salehi, B., Mortaz, E., Tabarsi, P.: Comparison of antibacterial activities of cadmium oxide nanoparticles against Pseudomonas aeruginosa and Staphylococcus aureus bacteria. Adv. Biomed. Res. 4, 105 (2015)

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Juneja, S., Madhavan, A.A., Ghosal, A., Moulick, R.G., Bhattacharya, J.: Synthesis of graphenized Au/ZnO plasmonic nanocomposites for simultaneous sunlight mediated photo-catalysis and anti-microbial activity. J. Hazard. Mater. 347, 378–389 (2018)

    CAS  Article  Google Scholar 

  30. 30.

    Kumar, P., Mathpal, M.C., Prakash, J., Viljoen, B.C., Roos, W.D., Swart, H.C.: Band gap tailoring of cauliflower-shaped CuO nanostructures by Zn doping for antibacterial applications. J. Alloys Comp. 832, 154968 (2020)

    CAS  Article  Google Scholar 

  31. 31.

    Kumar, P., Mathpal, M.C., Inwati, G.K., Ghosh, S., Kumar, V., Roos, W.D., Swart, H.C.: Optical and surface properties of Zn doped CdO nanorods and antimicrobial applications. Colloids Surf. A 605, 125369 (2020)

    CAS  Article  Google Scholar 

  32. 32.

    Kaviyarasu, K., Kanimozhi, K., Matinise, N., et al.: Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: investigation of bio-electronic application. Mater. Sci. Eng. C 76, 1012–1025 (2017)

    CAS  Article  Google Scholar 

  33. 33.

    Demir, E., Qin, T., Li, Y., Zhang, Y., et al.: Cytotoxicity and genotoxicity of cadmium oxide nanoparticles evaluated using in vitro assays. Mutat. Res.-Gen. Tox. Environ. 850–851, 503149 (2020)

    Article  Google Scholar 

  34. 34.

    Shad, N.A., Sajid, M.M., Ul Haq, A., et al.: Photocatalytic investigation of cadmium oxide nanosheets prepared by hydrothermal method. Arab. J. Sci. Eng. 44, 6669–6675 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    Somasundaram, G., Rajan, J., Sangaiya, P., Dilip, R.: Hydrothermal synthesis of CdO nanoparticles for photocatalytic and antimicrobial activities. Result Mater. 4, 100044 (2019)

    Article  Google Scholar 

  36. 36.

    Menazea, A., Alashkar, E.: Impact of CuO doping on the properties of CdO thin films on the catalytic degradation by using pulsed-Laser deposition technique. Opt. Mater. 100, 109663 (2020)

    CAS  Article  Google Scholar 

  37. 37.

    Saha, M., Ghosh, S., De, S.K.: Nanoscale Kirkendall effect driven Au decorated CdS/CdO colloidal nanocomposites for efficient hydrogen evolution, photocatalytic dye degradation and Cr(VI) reduction. Cat. Today. 340, 253–267 (2020)

    CAS  Article  Google Scholar 

  38. 38.

    Kumar, P., Kumar, A., Rizvi, M.A., Moosvi, S.K., et al.: Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Appl. Surf. Sci. 514, 145930 (2020)

    CAS  Article  Google Scholar 

Download references


The authors would like to acknowledge the financial support provided by a Research University Grant from University of Malaya (RU001-2020). The KSU authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Author information



Corresponding authors

Correspondence to Suresh Sagadevan or J. Anita Lett.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sagadevan, S., Vennila, S., Muthukrishnan, L. et al. Facile fabrication of Au-loaded CdO nanoconstructs with tuned properties for photocatalytic and biomedical applications. J Nanostruct Chem (2021). https://doi.org/10.1007/s40097-020-00384-4

Download citation


  • Transparent conducting oxides (TCOs)
  • Gold-doped cadmium oxide
  • Rhodamine B degradation
  • Biomedical applications
  • Antimicrobial effect
  • Photocatalytic activity