Skip to main content
Log in

Au@CdO core/shell nanoparticles synthesized by pulsed laser ablation in Au precursor solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Au@CdO core/shell nanocomposite was prepared using Pulsed Laser Ablation in Liquids (PLAL) via one step-process. A nanosecond pulsed laser (Nd:YAG, λ = 1064 nm) was used to ablate Cd sheet immersed in HAuCl4 solution. The surface plasmon resonance (SPR) using UV–vis absorption spectroscopy was employed to monitor the fast changes occurring in the NP colloidal solutions upon interaction between Cd sheets and Au precursor. The structure of the as-prepared samples was confirmed by high resolution transmission electron microscope (HRTEM) analysis and energy dispersion X-Ray spectroscopy (EDX) analysis. A mechanism for the growth of Au@CdO core/shell nanocomposite was given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Horikoshi, N. Serpone, Microwaves in Nanoparticle Synthesis: Fundamentals and Applications. (John Wiley, Berlin, 2013)

    Google Scholar 

  2. E.A. Mwafy, A.A. Abd-Elmgeed, A.A. Kandil, I.A. Elsabbagh, M.M. Elfass, M.S. Gaafar, High UV-shielding performance of zinc oxide/high-density polyethylene nanocomposites. Spectrosc. Lett. 48(9), 646–652 (2015)

    ADS  Google Scholar 

  3. A. Abou-Kandil, A. Awad, E Mwafy, Polymer nanocomposites part 2: optimization of zinc oxide/high-density polyethylene nanocomposite for ultraviolet radiation shielding. J. Thermoplast. Compos. Mater. 28(11), 1583–1598 (2015)

    Google Scholar 

  4. V. Abdelsayed, G. Glaspell, M. Nguyen, J. Howe, M. El-Shall, Laser synthesis of bimetallic nanoalloys in the vapor and liquid phases and the magnetic properties of Pdm and Ptm nanoparticles (M = Fe, Co and Ni). Faraday Discuss 138, 163–180 (2008)

    ADS  Google Scholar 

  5. N. Toshima, Core/shell-structured bimetallic nanocluster catalysts for visible-light-induced electron transfer. Pure Appl. Chem. 72(1–2), 317–325 (2009)

    Google Scholar 

  6. J. Liao, Y. Zhang, W. Yu, L. Xu, C. Ge, J. Liu, N. Gu, Linear aggregation of gold nanoparticles in ethanol. Colloids Surf. A 223, 177–183 (2003)

    Google Scholar 

  7. S. Stadnichenko, A. Koshcheev, Boronin, Oxidation of the polycrystalline gold foil surface and Xps study of oxygen states in oxide layers. Moscow Univ. Chem. Bull. 62(6), 343–349 (2007)

    Google Scholar 

  8. W.M. Darwish, A.M. Darwish, E.A. Al-Ashkar, Indium(III) phthalocyanine eka-conjugated polymer as high-performance optical limiter upon nanosecond laser irradiation. High Perform. Polym. 28(6), 651–659 (2016)

    Google Scholar 

  9. W.M. Darwish, A.M. Darwish, E.A. Al-Ashkar, Synthesis and nonlinear optical properties of a novel indium pthalocyanine highly branched polymer. Polym. Adv. Technol. 26(8), 1014–1019 (2015)

    Google Scholar 

  10. C.T. Nguyen, J.T. Nguyen, S. Rutledge, J. Zhang, C. Wang, G.C. Walker, Detection of chronic lymphocytic leukemia cell surface markers using surface enhanced Raman scattering gold nanoparticles. Cancer Lett. 292, 91–97 (2010)

    Google Scholar 

  11. M.L. Pacea, A. Guarnaccioa, F. Ranùa, D. Trucchib, S. Orlandoa, D. Mollicaa, G.P. Parisia, L. Medicic, A. Lettinoc, A. De Bonisd, R. Teghild, A. Santagataa, Plasmonic angular tunability of gold nanoparticles generated byfs laser ablation. Appl. Surf. Sci. 374, 397–402 (2016)

    ADS  Google Scholar 

  12. V. Amendola, S. Scaramuzza, S. Agnoli, S. Polizzi, M. Meneghetti, Strong dependence of surface plasmon resonance and surface enhanced raman scattering on the composition of Au–Fe nanoalloys. Nanoscale 6, 1423–1433 (2014)

    ADS  Google Scholar 

  13. M. Tadjarodi, Imani, A novel nanostructure of cadmium oxide synthesized by mechanochemical method. Mater. Res. Bull. 46, 1949–1954 (2011)

    Google Scholar 

  14. F. Mafune, J.-Y. Kohno, Y. Takeda, T. Kondow, H. Sawabe, Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B 104, 9111–9117 (2000)

    Google Scholar 

  15. J. Zhang, M. Post, T. Veres, Z.J. Jakubek, J. Guan, D. Wang, F. Normandin, Y. Deslandes, B. Simard, Laser-assisted synthesis of superparamagnetic Fe@Au core/shell nanoparticles. J. Phys. Chem. B, 110, 7122–7128 (2006)

    Google Scholar 

  16. M. Darwish, W.H. Eisa, A.A. Shabaka, M.H. Talaat, Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 153, 315–320 (2016)

    ADS  Google Scholar 

  17. M. Darwish, W.H. Eisa, A.A. Shabaka, M. H. Talaat, Synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment. Spectrosc. Lett. 48 (9), 638–645 (2015)

    ADS  Google Scholar 

  18. M. Mostafa, S.A. Yousef, W.H. Eisa, M.A. Ewaida, E.A. Al-Ashkar, Synthesis of Cadmium Oxide Nanoparticles by pulsed laser ablation in liquid environment. Optik-Int. J. Light Electron Optics 144, 679–684 (2017)

    Google Scholar 

  19. R.M. Tilaki, A. Irajizad, S.M. Mahdavi, Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl Phys A 84, 215–219 (2006)

    ADS  Google Scholar 

  20. D. Suzana Petrovi, B. Milovanov, D. Salat, J. Peru_sko, G. Kova, M. Dra_zi, M. Mitri, B. Trtica, Jelenkovi, Composition and structure of NiAu nanoparticles formed by laser ablation of Ni target in Au colloidal solution. Mater. Chem. Phys. 166, 223–232 (2015)

    Google Scholar 

  21. M. Vinod, K.G. Gopchandran, Ag@Au core–shell nanoparticles synthesized by pulsed laser ablation in water: effect of plasmon coupling and their SERS performance. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 913–919 (2015). https://doi.org/10.1016/j.saa.2015.05.004

    Article  Google Scholar 

  22. Z. Sheykhifard, M. Ranjbar, H. Farrokhpour, H. Salamati, Direct Fabrication of Au/Pd(II) colloidal core-shell nanoparticles by pulsed laser ablation of gold in PdCl2 solution. J. Phys. Chem. C 119, 9534–9542 (2015)

    Google Scholar 

  23. J. Zhang, D. Nii Oko, S. Garbarino, R. Imbeault, M. Chaker, A.C. Tavares, D. Guay, D. Ma, Preparation of PtAu alloy colloids by laser ablation in solution and their characterization. J. Phys. Chem. C 116(24), 13413–13420 (2012)

    Google Scholar 

  24. Z. Swiatkowska-Warkocka, K. Kawaguchi, Y. Shimizu, A. Pyatenko, H. Wang, N. Koshizaki, Synthesis of Au-based porous magnetic spheres by selective laser heating in liquid. Langmuir 28, 4903–4907 (2012)

    Google Scholar 

  25. E. Fazioa, P. Calandrab, V. Turco Liveri, N. Santod, S. Trusso, Synthesis and physico-chemical characterization of Au/TiO2 nanostructures formed by novel “cold” and “hot” nanosoldering of Au and TiO2 nanoparticles dispersed in water. Colloids Surf. A Physicochem. Eng. Aspects 392, 171–177 (2011)

    Google Scholar 

  26. G. Bajaj, R.K. Soni, Gold/tin oxide nanocomposite by nanojoining. Open Surf. Sci. J. 3, 65–69 (2011)

    ADS  Google Scholar 

  27. G. Bajaj, R.K. Soni, Synthesis of composite gold/tin-oxide nanoparticles by nano-soldering. J. Nanopart. Res. 12(7), 2597–2603 (2010)

    ADS  Google Scholar 

  28. S. Besner, M. Meunier, Femtosecond laser synthesis of AuAg nanoalloys: photoinduced oxidation and ions release. J. Phys. Chem. C 114(23), 10403–10409 (2010)

    Google Scholar 

  29. P. Boyer, D. Me´nard, M. Meunier, Nanoclustered Co-Au particles fabricated by femtosecond laser fragmentation in liquids. J. Phys. Chem. C 114(32), 13497–13500 (2010)

    Google Scholar 

  30. T. Izgaliev, A.V. Simakin, G.A. Shafeev, F. Bozon-Verduraz, Intermediate phase upon alloying Au–Ag nanoparticles under laser exposure of the mixture of individual colloids. Chem. Phys. Lett. 390, 467–471 (2004)

    ADS  Google Scholar 

  31. S. Kumar, A.K. Ojha, B. Walkenfort, Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation. J. Photochem. Photobiol. B Biol. 159, 111–119 (2016)

    Google Scholar 

  32. E. Solati, M. Mashayekh, D. Dorranian, Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation. Appl. Phys. A Mater. Sci. Process 112, 689–694 (2013)

    ADS  Google Scholar 

  33. R.B. Fahim, G.A. Kolta, Thermal decomposition of hydrated cadmium oxide. J. Phys. Chem 74(12), 2502–2506 (1970)

    Google Scholar 

  34. K. Kaviyarasu, E. Manikandan, P. Paulraj, S.B. Mohamed, J. Kennedy, One dimensional well-aligned CdO nanocrystal by solvothermal method. J. Alloy Compd. 593, 67–70 (2014)

    Google Scholar 

  35. S. Gandhi, R.H.H. Subramani, T. Ramankrishnan, A. Sivabalan, V. Dhanalakshmi, M.R.G. Gopinath Nair, R. Anbarasan, Ultrasound assisted one pot synthesis of nano-sized CuO and its nanocomposite with poly (vinyl alcohol). J. Mater. Sci 45, 1688–1694 (2010)

    ADS  Google Scholar 

  36. K. Kaviyarasu, C. Maria Magdalane, K. Anand, E. Manikandan, M. Maaza, Synthesis and characterization studies of MgO:CuO nanocrystals by wet-chemical method. Spectrochim. Acta Part A 142, 405–409 (2015)

    ADS  Google Scholar 

  37. S. Sivakumar, A. Venkatesan, P. Soundhirarajan, C.P. Khatiwada. Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 1751–1759 (2015)

    ADS  Google Scholar 

  38. D. Moses Ezhil Raj, V. Deva Jayanthi, Bena Jothy, Optimized growth and characterization of cadmium oxalate single crystals in silica gel. Solid State Sci 10(5), 557–562 (2008)

    ADS  Google Scholar 

  39. T. Kaneko, K. Baba, R. Hatakeyama, Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode. J. Appl. Phys. 105(10), 103306 (2009)

    ADS  Google Scholar 

  40. M. Mostafa, M.F. Hameed, S.S. Obayya, Effect of laser shock peening on the hardness of AL-7075 alloy. J. King Saud. Univ. Sci. (2017). https://doi.org/10.1016/j.jksus.2017.07.012

    Google Scholar 

  41. P.W. Atkins, P.W. Atkins, The Elements of Physical Chemistry, vol. 496 (Oxford University Press, Oxford, 1992)

    MATH  Google Scholar 

  42. Z. Liu, Y. Yuan, S. Khan, A. Abdolvand, D. Whitehead, M. Schmidt, L. Li, Generation of metal-oxide nanoparticles using continuous-wave fibre laser ablation in liquid. J. Micromech. Microeng. 19(5), 1–7 (2009)

    Google Scholar 

  43. P. Maneeratanasarn, T. Van Khai, S.Y. Kim, B.G. Choi, K.B. Shim, Synthesis of phase-controlled iron oxide nanoparticles by pulsed laser ablation in different liquid media. Phys. Status Solidi. A 210(3), 563–569 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

This paper draws on work supported by the facilities of Laser Technology Unit, National Research Centre, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman M. Mostafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafa, A.M., Yousef, S.A., Eisa, W.H. et al. Au@CdO core/shell nanoparticles synthesized by pulsed laser ablation in Au precursor solution. Appl. Phys. A 123, 774 (2017). https://doi.org/10.1007/s00339-017-1354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1354-y

Navigation